calpastatin has been researched along with pepstatin* in 2 studies
2 other study(ies) available for calpastatin and pepstatin
Article | Year |
---|---|
Treatment of rats with calpain inhibitors prevents sepsis-induced muscle proteolysis independent of atrogin-1/MAFbx and MuRF1 expression.
Muscle wasting in sepsis is a significant clinical problem because it results in muscle weakness and fatigue that may delay ambulation and increase the risk for thromboembolic and pulmonary complications. Treatments aimed at preventing or reducing muscle wasting in sepsis, therefore, may have important clinical implications. Recent studies suggest that sepsis-induced muscle proteolysis may be initiated by calpain-dependent release of myofilaments from the sarcomere, followed by ubiquitination and degradation of the myofilaments by the 26S proteasome. In the present experiments, treatment of rats with one of the calpain inhibitors calpeptin or BN82270 inhibited protein breakdown in muscles from rats made septic by cecal ligation and puncture. The inhibition of protein breakdown was not accompanied by reduced expression of the ubiquitin ligases atrogin-1/MAFbx and MuRF1, suggesting that the ubiquitin-proteasome system is regulated independent of the calpain system in septic muscle. When incubated muscles were treated in vitro with calpain inhibitor, protein breakdown rates and calpain activity were reduced, consistent with a direct effect in skeletal muscle. Additional experiments suggested that the effects of BN82270 on muscle protein breakdown may, in part, reflect inhibited cathepsin L activity, in addition to inhibited calpain activity. When cultured myoblasts were transfected with a plasmid expressing the endogenous calpain inhibitor calpastatin, the increased protein breakdown rates in dexamethasone-treated myoblasts were reduced, supporting a role of calpain activity in atrophying muscle. The present results suggest that treatment with calpain inhibitors may prevent sepsis-induced muscle wasting. Topics: Animals; Calcium-Binding Proteins; Calpain; Cell Line; Cysteine Proteinase Inhibitors; Dexamethasone; Dipeptides; Gene Expression; Glycoproteins; Hydrogen Peroxide; Male; Muscle Proteins; Muscle, Skeletal; Muscular Atrophy; Myoblasts, Skeletal; Pepstatins; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Rats; Rats, Sprague-Dawley; Sepsis; SKP Cullin F-Box Protein Ligases; Transfection; Tripartite Motif Proteins; Ubiquitin-Protein Ligases | 2006 |
Cleavage of the calpain inhibitor, calpastatin, during apoptosis.
Calpain activity is thought to be essential for the execution of apoptotic cell death in certain experimental models. In the present study, the physiological inhibitor of calpain, calpastatin, was found to be cleaved in three different apoptotic systems. The 110-120 kDa calpastatin protein of Jurkat T-lymphocytes and U937 monocytic leukemia cells was cleaved to a 65-70 kDa form after the induction of apoptosis with anti-CD95 monoclonal antibody, staurosporine or TNF. Cleavage of calpastatin in apoptotic cells occurred simultaneously with the cleavage of the DNA repair enzyme, poly(ADP-ribose) polymerase. The caspase inhibitors VAD-cmk and IETD-fmk prevented calpastatin cleavage in all three systems. Calpain inhibitor I, however, suppressed calpastatin cleavage only during TNF-induced apoptosis. Other protease inhibitors, such as lactacystin and pepstatin A, did not confer any significant protection against apoptotic calpastatin cleavage. The results from in vitro incubations with cell lysates and purified enzymes showed that calpain I, calpain II and recombinant caspase-3, all cleaved calpastatin, with varying efficiency. In conclusion, the results of the present study suggest that caspases may cleave calpastatin and thus, regulate calpain activity during apoptotic cell death. Topics: Acetylcysteine; Apoptosis; Calcium-Binding Proteins; Calpain; Caspase 3; Caspases; Cysteine Proteinase Inhibitors; Enzyme Inhibitors; fas Receptor; Flow Cytometry; Humans; Jurkat Cells; Pepstatins; Protease Inhibitors; Staurosporine; Tumor Necrosis Factor-alpha; U937 Cells | 1998 |