calpastatin has been researched along with leupeptin* in 15 studies
15 other study(ies) available for calpastatin and leupeptin
Article | Year |
---|---|
Insertion sequence 1 from calpain-3 is functional in calpain-2 as an internal propeptide.
Calpains are intracellular, calcium-activated cysteine proteases. Calpain-3 is abundant in skeletal muscle, where its mutation-induced loss of function causes limb-girdle muscular dystrophy type 2A. Unlike the small subunit-containing calpain-1 and -2, the calpain-3 isoform homodimerizes through pairing of its C-terminal penta-EF-hand domain. It also has two unique insertion sequences (ISs) not found in the other calpains: IS1 within calpain-3's protease core and IS2 just prior to the penta-EF-hand domain. Production of either native or recombinant full-length calpain-3 to characterize the function of these ISs is challenging. Therefore, here we used recombinant rat calpain-2 as a stable surrogate and inserted IS1 into its equivalent position in the protease core. As it does in calpain-3, IS1 occupied the catalytic cleft and restricted the enzyme's access to substrate and inhibitors. Following activation by Ca Topics: Calcium; Calcium-Binding Proteins; Calpain; Cysteine Proteinase Inhibitors; DNA Transposable Elements; Isoenzymes; Leucine; Leupeptins; Muscle Proteins; Protein Conformation; Proteolysis; Recombinant Proteins | 2018 |
Leupeptin-based inhibitors do not improve the mdx phenotype.
Calpain activation has been implicated in the disease pathology of Duchenne muscular dystrophy. Inhibition of calpain has been proposed as a promising therapeutic target, which could lessen the protein degradation and prevent progressive fibrosis. At the same time, there are conflicting reports as to whether elevation of calpastatin, an endogenous calpain inhibitor, alters pathology. We compared the effects of pharmacological calpain inhibition in the mdx mouse using leupeptin and a proprietary compound (C101) that linked the inhibitory portion of leupeptin to carnitine (to increase uptake into muscle). Administration of C101 for 4 wk did not improve muscle histology, function, or serum creatine kinase levels in mdx mice. Mdx mice injected daily with leupeptin (36 mg/kg) for 6 mo also failed to show improved muscle function, histology, or creatine kinase levels. Biochemical analysis revealed that leupeptin administration caused an increase in m-calpain autolysis and proteasome activity, yet calpastatin levels were similar between treated and untreated mdx mice. These data demonstrate that pharmacological inhibition of calpain is not a promising intervention for the treatment of Duchenne muscular dystrophy due to the ability of skeletal muscle to counter calpain inhibitors by increasing multiple degradative pathways. Topics: Animals; Biomarkers; Calcium-Binding Proteins; Calpain; Creatine Kinase; Cysteine Proteinase Inhibitors; Diaphragm; Disease Models, Animal; Dose-Response Relationship, Drug; Genotype; Leupeptins; Mice; Mice, Inbred mdx; Muscle Contraction; Muscle Strength; Muscular Dystrophy, Duchenne; Necrosis; Phenotype; Proteasome Endopeptidase Complex; Time Factors | 2010 |
Myoblast migration is regulated by calpain through its involvement in cell attachment and cytoskeletal organization.
Cell migration is a fundamental cellular function particularly during skeletal muscle development. Ubiquitous calpains are well known to play a pivotal role during muscle differentiation, especially at the onset of fusion. In this study, the possible positive regulation of myoblast migration by calpains, a crucial step required to align myoblasts to permit them to fuse, was investigated. Inhibition of calpain activity by different pharmacological inhibitors argues for the involvement of these proteinases during the migration of myoblasts. Moreover, a clonal cell line that fourfold overexpresses calpastatin, the endogenous inhibitor of calpains, and that exhibits deficient calpain activities was obtained. The results showed that the migratory capacity of C2C12 and fusion into multinucleated myotubes were completely prevented in these clonal cells. Calpastatin-overexpressing myoblasts unable to migrate were characterized by rounded morphology, the loss of membrane extensions, the disorganization of stress fibers and exhibited a major defect in new adhesion formation. Surprisingly, the proteolytic patterns of desmin, talin, vinculin, focal adhesion kinase (FAK) and ezrin, radixin, moesin (ERM) proteins are the same in calpastatin-overexpressing myoblasts as compared to control cells. However, an important accumulation of myristoylated alanine-rich C kinase substrate (MARCKS) was observed in cells showing a reduced calpain activity, suggesting that the proteolysis of this actin-binding protein is calpain-dependent and could be involved in both myoblast adhesion and migration. Topics: Animals; Calcium-Binding Proteins; Calpain; Cell Adhesion; Cell Fusion; Cell Line; Cell Movement; Clone Cells; Cysteine Proteinase Inhibitors; Cytoskeleton; Dipeptides; Dose-Response Relationship, Drug; Glucosidases; Intracellular Signaling Peptides and Proteins; Leupeptins; Membrane Proteins; Mice; Muscle Fibers, Skeletal; Myoblasts; Myristoylated Alanine-Rich C Kinase Substrate; Oligopeptides; Phosphoproteins; Stress Fibers | 2004 |
Calpain-mediated AQP2 proteolysis in inner medullary collecting duct.
Vitamin D-elicited hypercalcemia/hypercalciuria is associated with polyuria in humans and in animal models. In rats, dihydrotachysterol (DHT) induces AQP2 water channel downregulation despite unaltered AQP2 mRNA expression and thus we investigated the mechanism of AQP2 degradation. Incubation of AQP2-containing inner medullary collecting duct (IMCD) endosomes with Ca(2+) or calpain elicited AQP2 proteolysis, an effect abolished by leupeptin. This endogenous, Ca(2+)-sensitive protease activity exhibited a different proteolytic digest pattern from trypsin, which also degraded AQP2 in vitro. IMCDs contain abundant micro-calpain protein and functional calpain proteolytic activity as demonstrated by immunohistochemistry, immunoblotting, and gel zymography. Furthermore, by small particle flow cytometry we demonstrated that micro-calpain colocalizes with apical IMCD endosomes. DHT does not appear to elicit general proteolysis, however, in addition to AQP2 degradation, DHT treatment also diminished micro-calpain and calpastatin expression although whether these changes contributed to the AQP2 instability remains unclear. Together, these data show for the first time that AQP2 is a substrate for calpain-mediated proteolysis and that furthermore, micro-calpain, like AQP2, is both highly expressed in renal inner medulla and localized to apical IMCD endosomes. Topics: Animals; Aquaporin 2; Aquaporin 6; Aquaporins; Calcium; Calcium-Binding Proteins; Calpain; Caseins; Cysteine Proteinase Inhibitors; Dextrans; Dihydrotachysterol; Dose-Response Relationship, Drug; Down-Regulation; Endosomes; Flow Cytometry; Immunoblotting; Immunohistochemistry; Kidney Tubules, Collecting; Leupeptins; Male; Protein Binding; Rats; Rats, Sprague-Dawley; Trypsin | 2003 |
The calpain-calpastatin system and the calcium paradox in the isolated perfused pigeon heart.
To examine whether the calpain-calpastatin system is activated during the calcium paradox in the isolated perfused pigeon heart, we separated the protease from its inhibitor calpastatin and studied its kinetic properties. The protease exhibits kinetic properties similar to those of mammalian m-calpains. Ca(2+) requirements for half and maximum activities are 220 microM and 2 mM, respectively. In the absence of Ca(2+) the protease is strongly activated by Mn(2+) or Sr(2+). In the presence of Ca(2+), Mn(2+) and Sr(2+) exhibit a synergistic effect; Mg(2+) and Ba(2+) have no effect, whereas Co(2+), Ni(2+) and Cd(2+) completely inhibit its activation. Furthermore, we measured the activity of calpain and calpastatin under either conditions inducing a calcium paradox, or protecting the heart against this phenomenon. Although the calpain/calpastatin ratio is lowered during Ca(2+) depletion, during Ca(2+) repletion it is markedly inverted. Calpain activation during reperfusion is inhibited by the presence of 200 microM Mn(2+) or Ba(2+), in the Ca(2+)-free medium. Gel filtration of calpastatin, isolated from either untreated hearts or during Ca(2+) depletion, produces two main peaks of ñ150 and 40 kDa of molecular mass, respectively, whereas calpastatin isolated during the 2(nd) min of reperfusion appears to be shifted to the 150 kDa form. All the above data suggest that this system may be involved in the induction of the calcium paradox in pigeon heart. Topics: Animals; Antipain; Barium; Calcium; Calcium-Binding Proteins; Calpain; Cobalt; Columbidae; Dose-Response Relationship, Drug; Enzyme Inhibitors; Ethylmaleimide; Heart; In Vitro Techniques; Kinetics; Leucine; Leupeptins; Magnesium; Manganese; Molecular Weight; Myocardium; Nickel; Phenylmethylsulfonyl Fluoride; Strontium; Time Factors | 2003 |
Opening of ligand-gated cation channel families by calpain inhibitors.
The class of Ca2+-permeable cation channels is composed of large families with six transmembrane segments including transient receptor potential, vanilloid receptor (VR), polycystin, epithelial calcium channels and melastatin (MLS). However, most of them are functionally silent and unexpressed in mammalian cells. An investigation of associated proteins made us believe that the blockade of calpain opens the silent channels. Using 1 microM of blockers in whole cellular patch pipette fill we measured currents of Chinese hamster ovary cells transfected by VR-like 1 and 2, polycystin-2, or a MLS-like new member (MLS3S). Significant conductance of every clone with a characteristic rectification by blockers was demonstrated. The permeability of Ca2+ to them is similar to that reported. Western blot suggested that blockers did not affect the assembly of the protein but enabled its cleavage. Therefore, investigation of these families with the blockers may boost our knowledge of electrophysiologic function. Topics: Amino Acid Sequence; Animals; Calcium; Calcium Channels; Calcium-Binding Proteins; Calpain; Cell Membrane Permeability; CHO Cells; Cloning, Molecular; Cricetinae; Cysteine Proteinase Inhibitors; Electrophysiology; Ion Channel Gating; Leupeptins; Ligands; Membrane Proteins; Molecular Sequence Data; Patch-Clamp Techniques; Receptors, Drug; Transfection; TRPP Cation Channels | 2002 |
[Demonstration of secondary free radicals and the role of calpain in functional changes associated with the myocardial ischemia-reperfusion sequence].
The aim of this study was to investigate the role of secondary free radicals and calpain, a calcium-activated cysteine protease, in the development of reperfusion injury in the heart. The time course of radical generation was assessed directly by Electron Paramagnetic Resonance (EPR) and spin trapping with N-ter butyl-alpha-phenylnitrone (PBN), in isolated perfused rat heart subjected to 30 minutes of global ischemia and 30 minutes of reperfusion. The effect of leupeptin, a calpain inhibitor, was assessed on postischemic dysfunction. The antioxidant properties of leupeptin were also investigated by using allophycocyanin, a fluorescent protein sensitive to oxidative stress generated by the H2O2 + Cu++ system. Moreover, we measured the capacities of leupeptin to scavenge hydroxyl (.OH) and superoxide (O2-.) radicals using EPR technique. Our results show that myocardial reperfusion is associated with an increase of alkyl, alkoxyl free radicals release; the administration of catalase 5.10(5) UI/L significantly reduces this release, but didn't improve the postischemic contractile function of the heart. In our study leupeptin 50 microM possess, in vitro, antioxidant properties and scavenging abilities against .OH and O2-., in return leupeptin does not influence the cardiac functions during reperfusion period. In conclusion, our results confirm that myocardial reperfusion induces an important production of secondary free radicals associated with contractile dysfunction. The role of calpain in myocardial ischemia-reperfusion injury remains to be clarified 1) by assessing the activities of calpain and calpastain, its main endogenous inhibitor, during these periods, 2) by measuring the ability of leupeptin in inhibiting the calpain dependent proteolysis. Topics: Animals; Antioxidants; Calcium-Binding Proteins; Calpain; Catalase; Cathepsins; Cyclic N-Oxides; Cysteine Proteinase Inhibitors; Electron Spin Resonance Spectroscopy; Free Radical Scavengers; Free Radicals; Hydroxyl Radical; Leupeptins; Magnetic Resonance Spectroscopy; Male; Myocardial Contraction; Myocardial Ischemia; Myocardial Reperfusion Injury; Nitrogen Oxides; Oxidative Stress; Phycocyanin; Rats; Rats, Wistar; Spin Labels; Superoxides; Time Factors | 2000 |
Deterioration of connectin/titin and nebulin filaments by an excess of protease inhibitors.
We studied the effect of protease inhibitors at a high concentration on connectin and nebulin filaments in myofibrils. Calpastatin domain I at 0.1 mM bound to connectin and nebulin filaments, and deteriorated their physico-chemical properties; the calcium-binding ability of connectin and nebulin filaments was suppressed, the susceptibility of both filaments to trypsin was markedly decreased, and the resting tension of mechanically skinned fibers was increased by 2.5 times that of the control at a sarcomere length of 3.6 microns. This indicates that the connectin filaments were made more rigid. The same phenomenon was observed from the treatment of skinned fibers with 1 mM leupeptin whose resting tension was increased to 2 times the control value. Microscopically, both protease inhibitors induced dense aggregation and disappearance of the regular striation of myofibrils due to their non-specific binding to many myofibrillar proteins. The use of excess calpastatin domain I and leupeptin should therefore be avoided in physiological and biochemical studies on connectin and nebulin filaments, as well as on myofibrils. Topics: Animals; Calcium-Binding Proteins; Connectin; Cysteine Proteinase Inhibitors; Leupeptins; Muscle Proteins; Myofibrils; Protein Kinases; Rabbits | 1998 |
Rat myoblast fusion requires exteriorized m-calpain activity.
Our previous studies demonstrated that fibronectin could be proteolyzed by m-calpain during muscle cell differentiation. Recent results indicated also that m-calpain could be exteriorized and more particularly associated to extracellular matrix components. To clarify one of the possible physiological functions of this proteinase during myogenesis, we have analyzed the incidence of added purified m-calpain and calpain inhibitors on the fusion kinetics of cultured myoblasts. Our results provided evidence that at low concentration (0.01 microgram/ml), added m-calpain induces precocious fusion and increases myoblast fusion by 78%. At high concentrations (10 micrograms/ml), the viability of the cells was not affected but the myoblasts were unable to fuse. Leupeptin and calpastatin--potent m-calpain inhibitors--added to the culture medium reduced myoblast fusion by 70%. On the other hand, the addition of monospecific m-calpain polyclonal antibodies to the culture medium induced a 76% decrease of myoblast fusion. In order to trap exteriorized m-calpain, myoblasts were incubated for 24 h with m-calpain antibodies. Following this treatment, nonpermeabilized myoblasts exposed to labeled secondary antibodies showed fluorescent spots scattered at the cell surface. These results strongly support that m-calpain which was involved in myoblast fusion was exteriorized and suggest therefore that this enzyme may play an important role extracellularly. Topics: Animals; Biological Assay; Calcium-Binding Proteins; Calpain; Cell Fusion; Cells, Cultured; Culture Media; Immunoglobulin G; Immunohistochemistry; Kinetics; Leupeptins; Muscle Fibers, Skeletal; Rats; Rats, Wistar | 1994 |
Two-stage autolysis of the catalytic subunit initiates activation of calpain I.
Calcium-induced autolysis of bovine erythrocyte calpain I occurs in multiple stages. Initially, a 14 amino acid segment is cleaved from the N-terminus of the native 80 kDa catalytic subunit, yielding a 78 kDa form of the subunit. Then, an additional 12 amino acid segment is cleaved from the N-terminus, forming a 76 kDa subunit. The 76 kDa enzyme is the active form of the catalytic subunit that is able to proteolyze the 30 kDa regulatory subunit as well as exogenous substrates. While the initial autolytic step requires high calcium, the 76 kDa enzyme form is active in microM calcium and can cleave the amino termini of native 80 kDa and intermediate 78 kDa enzyme forms at low calcium. Both intramolecular and intermolecular proteolysis of the catalytic subunit appear to yield the same products. Topics: Amino Acid Sequence; Animals; Calcium; Calcium-Binding Proteins; Calpain; Carbohydrate Sequence; Cattle; Enzyme Activation; Erythrocytes; Leupeptins; Molecular Sequence Data | 1991 |
Factors influencing the binding of calpain I to human erythrocyte inside-out vesicles.
The mechanism for binding of human erythrocyte calpain I to human erythrocyte inside-out vesicles was studied by immunoelectrophoretic blot analysis. Binding of calpain I to inside-out vesicles was observed both in the absence and presence of Ca2+. Moreover, in the absence of Ca2+, acidic proteins like casein, ovalbumin and calpastatin suppressed while basic proteins like arginase and lysozyme did not affect the binding of calpain I to inside-out vesicles. Here, we propose a model for the binding of calpain to the membrane. Topics: Arginase; Calcium; Calcium-Binding Proteins; Calpain; Caseins; Erythrocyte Membrane; Humans; Immunoelectrophoresis; Immunoglobulins; Leupeptins; Models, Biological; Muramidase; Ovalbumin; Protease Inhibitors | 1990 |
Properties of erythrocyte membrane binding and autolytic activation of calcium-activated neutral protease.
The binding of a calcium-activated neutral protease (CANP) with high calcium sensitivity (muCANP) to erythrocyte membranes and its subsequent autolytic activation on the membranes were analyzed by an immunoblot technique. In the presence of calcium ions, muCANP bound to the erythrocyte membranes as a heterodimer of 79- and 28-kDa subunits and was converted quickly on the membranes to an active form with a 76-kDa large subunit. The active form was then released from the membranes to the soluble fraction. These sequential reactions, however, were not specific to inside-out vesicles, but occurred also, except for some Ca2+-independent binding, on right side-out vesicles. A rapid degradation of some membrane proteins was observed after binding of muCANP to the membranes. The binding of muCANP to erythrocyte membranes was inhibited by substrates and the endogenous CANP inhibitor, which is also a suicide substrate. These results strongly suggest that muCANP binds to membranes by recognition of membrane proteins as substrates and not at a special site for activation. Thus, a possible mechanism for muCANP activation on membranes is that muCANP first binds to substrates on membranes, is activated, and then degrades the substrates to deform the membrane structures. Topics: Animals; Blood Proteins; Calcium; Calcium-Binding Proteins; Calpain; Caseins; Chickens; Egtazic Acid; Enzyme Activation; Erythrocyte Membrane; Immunoblotting; Kinetics; Leupeptins; Macromolecular Substances; Membrane Proteins; Mice; Molecular Weight; Rabbits; Vimentin | 1989 |
Calcium-activated neutral proteases (calpains) are carbohydrate binding proteins.
Calcium-activated neutral proteases (calpain, EC 3.4.22.17) bind to agarose matrices (Bio-Gel A-150m, Sepharose 4B, and Ultrogel AcA 34) with high affinity in the presence of calcium. 6-O-beta-Galactopyranosyl-D-galactose, a disaccharide which closely resembles the repeating unit of the agarose matrices, completely blocks the binding of calpains and can release agarose-bound enzymes in the presence of calcium. At least 1 microM level of free calcium is required for binding. Other calcium binding proteins, including calmodulin, calpastatin, casein, and neurofilament proteins, fail to bind under the same conditions. Both calpain I and calpain II can be readily purified from crude enzyme preparations by agarose chromatography in the presence of calcium and leupeptin. Agarose-bound enzymes are eluted with calcium-free solutions or can be released in the presence of calcium by 1% Triton X-100, but not by 1 M urea or 20% ethylene glycol. Enzymes eluted from agarose are activated, as evidenced by the appearance of faster migrating forms (76 and 78 kDa) of the 80-kDa catalytic subunit of calpain I upon electrophoresis and by the increased sensitivity of calpain II to activation by micromolar levels of calcium. The electrophoretic migration of the 30-kDa regulatory subunit is, however, unaltered in enzyme fractions eluted from an agarose column. When the enzyme subunits are dissociated in 1 M NaSCN, only the 30-kDa subunit binds to the agarose matrix. Furthermore, neither calpain I nor calpain II binds to agarose when their 30-kDa subunit is autocatalyzed to an 18-kDa fragment, indicating that the NH2-terminal of the 30-kDa subunit is important for the binding of calpains to an agarose matrix. Topics: Calcium; Calcium-Binding Proteins; Calpain; Carbohydrate Metabolism; Chromatography; Disaccharides; Enzyme Activation; Ethylene Glycol; Ethylene Glycols; Leupeptins; Octoxynol; Polyethylene Glycols; Sepharose; Thiocyanates; Urea | 1988 |
Platelet factor XIII is activated by calpain.
The action of calpain (EC 3.4.22.17; Ca2+-dependent cysteine proteinase) on platelet factor XIII has been studied. Calpain I activated platelet factor XIII up to 76% of the maximum level observed with thrombin. Activation was accompanied by the limited proteolysis of the a subunit of platelet factor XIII to produce a 76 kDa fragment which was comparable to the proteolytic product by thrombin. Activation of platelet factor XIII by calpain was inhibited by EDTA, leupeptin, and endogenous calpain-specific inhibitor calpastatin. These findings suggest that calpain is responsible for the intracellular activation of platelet factor XIII. Topics: Blood Platelets; Calcium; Calcium-Binding Proteins; Calpain; Enzyme Activation; Factor XIII; Humans; In Vitro Techniques; Leupeptins; Thrombin; Transglutaminases | 1987 |
Evidence for membrane-associated calpain I in human erythrocytes. Detection by an immunoelectrophoretic blotting method using monospecific antibody.
Low and high Ca2+-requiring forms of Ca2+-dependent cysteine proteinase are known as calpain I and calpain II, respectively. We have obtained, for the first time, monospecific antibodies for calpain I and for calpain II. Using these antibodies and an electrophoretic blotting method, we have found that a small, but reproducible, amount of calpain I was associated with human erythrocyte membranes while the bulk of the protease was contained in the cytosol. Most of membrane-associated calpain I was extractable with 1% Triton X-100, but not with 0.1% detergent. In the presence of 0.1 mM Ca2+ and 5 mM cysteine, membrane-associated calpain I degraded the membrane protein band 4.1 preferentially and band 3 protein only slowly. The Ca2+-induced autodigestion of the membrane preparation was inhibited by leupeptin but not by a cytosolic calpain inhibitor, calpastatin, added to the incubation medium. No calpain II was detected in either erythrocyte cytosol or membranes when anti-calpain II antibody was used under the same conditions as those for the detection of calpain I. Topics: Antibodies, Monoclonal; Calcium; Calcium-Binding Proteins; Calpain; Electrophoresis, Polyacrylamide Gel; Endopeptidases; Erythrocyte Membrane; Humans; Immunoelectrophoresis; Immunoglobulin G; Leupeptins; Protease Inhibitors | 1984 |