calpastatin and lactacystin

calpastatin has been researched along with lactacystin* in 7 studies

Other Studies

7 other study(ies) available for calpastatin and lactacystin

ArticleYear
Nutritional regulation of proteases involved in fetal rat insulin secretion and islet cell proliferation.
    The British journal of nutrition, 2005, Volume: 93, Issue:3

    Epidemiological studies have indicated that malnutrition during early life may programme chronic degenerative disease in adulthood. In an animal model of fetal malnutrition, rats received an isoenergetic, low-protein (LP) diet during gestation. This reduced fetal beta-cell proliferation and insulin secretion. Supplementation during gestation with taurine prevented these alterations. Since proteases are involved in secretion and proliferation, we investigated which proteases were associated with these alterations and their restoration in fetal LP islets. Insulin secretion and proliferation of fetal control and LP islets exposed to different protease modulators were measured. Lactacystin and calpain inhibitor I, but not isovaleryl-L-carnitine, raised insulin secretion in control islets, indicating that proteasome and cysteinyl cathepsin(s), but not mu-calpain, are involved in fetal insulin secretion. Insulin secretion from LP islets responded normally to lactacystin but was insensitive to calpain inhibitor I, indicating a loss of cysteinyl cathepsin activity. Taurine supplementation prevented this by restoring the response to calpain inhibitor I. Control islet cell proliferation was reduced by calpain inhibitor I and raised by isovaleryl-L-carnitine, indicating an involvement of calpain. Calpain activity appeared to be lost in LP islets and not restored by taurine. Most modifications in the mRNA expression of cysteinyl cathepsins, calpains and calpastatin due to maternal protein restriction were consistent with reduced protease activity and were restored by taurine. Thus, maternal protein restriction affected cysteinyl cathepsins and the calpain-calpastatin system. Taurine normalised fetal LP insulin secretion by protecting cysteinyl cathepsin(s), but the restoration of LP islet cell proliferation by taurine did not implicate calpains.

    Topics: Acetylcysteine; Animals; Calcium-Binding Proteins; Calpain; Cell Proliferation; Cells, Cultured; Diet, Protein-Restricted; Disease Models, Animal; Female; Fetal Nutrition Disorders; Gene Expression Regulation, Developmental; Gene Expression Regulation, Enzymologic; Glycoproteins; Insulin; Insulin Secretion; Islets of Langerhans; Maternal-Fetal Exchange; Peptide Hydrolases; Pregnancy; Proteasome Endopeptidase Complex; Protein Array Analysis; Rats; Rats, Wistar; Taurine

2005
Calpain is involved in the HIV replication from the latently infected OM10.1 cells.
    Biochemical and biophysical research communications, 2003, Apr-11, Volume: 303, Issue:3

    Treatment of OM10.1 cells latently infected with human immunodeficiency virus type 1 (HIV-1) with phorbol ester and calcium ionophore (A23187) induced virus replication which was blocked by N-Ac-Leu-Leu-norleucinal (ALLnL), a calpain inhibitor I, and not by lactacystin, a specific proteasome inhibitor. When the purified NF-kappa B/I kappa B complex was treated with mu-calpain, the specific DNA-binding activity was demonstrated by using electrophoretic mobility shift assay in vitro. This effect of mu-calpain was inhibited by ALLnL and calpastatin and not by lactacystin. In fact, we found that mu-calpain efficiently degraded I kappa B alpha. Furthermore, our Western blotting analysis has revealed that mu-calpain cleaves I kappa B alpha at its N-terminal and C-terminal regions that were previously reported to be involved in the interaction with NF-kappa B p65. These observations indicate that in monocyte/macrophage cells calcium signaling is involved in NF-kappa B activation through activation of calpain and thus calpain inhibitors may be effective in inhibiting the activation of latently infected HIV.

    Topics: Acetylcysteine; Binding Sites; Calcimycin; Calcium Signaling; Calcium-Binding Proteins; Calpain; Cell Line; Glycoproteins; HIV-1; Humans; I-kappa B Proteins; In Vitro Techniques; Ionophores; Leucine; NF-kappa B; NF-KappaB Inhibitor alpha; Recombinant Fusion Proteins; Tetradecanoylphorbol Acetate; Virus Replication

2003
Proteolytic degradation of the retinoblastoma family protein p107: A putative cooperative role of calpain and proteasome.
    International journal of molecular medicine, 1999, Volume: 4, Issue:5

    p107 protein, a member of the retinoblastoma family protein, suppresses growth promotion in cancer cells. We have already reported evidence that calpain, a calcium dependent protease is involved in the cleavage of p107 protein. We show here that p107 protein can also be a substrate for ubiquitination. A negative growth regulator, the HMG-CoA reductase inhibitor lovastatin was found to induce loss of p107 protein which was reversible by a specific protease inhibitor lactacystin as well as calpain inhibitor. Following treatment with lovastatin higher molecular weight ubiquitinated forms of p107 were detected by anti-p107 immunoprecipitation and anti-ubiquitin Western blotting. These forms further increased when lactacystin was added to culture medium. These results indicate that ubiquitin-proteasome pathway plays a potential role in the degradation as well as calpain. The data presented here suggest a model in which calpain and ubiquitin-proteasome system possibly play a cooperative role in targeting the protein under certain conditions.

    Topics: Acetylcysteine; Antineoplastic Agents; Blotting, Western; Calcium-Binding Proteins; Calpain; CDC2-CDC28 Kinases; Cell Cycle; Cyclin-Dependent Kinase 2; Cyclin-Dependent Kinases; Cysteine Proteinase Inhibitors; Humans; Lovastatin; Male; Nuclear Proteins; Proliferating Cell Nuclear Antigen; Prostatic Neoplasms; Protein Serine-Threonine Kinases; Retinoblastoma Protein; Retinoblastoma-Like Protein p107; Sarcoma, Ewing; Transfection; Tumor Cells, Cultured; Ubiquitins

1999
Cleavage of the calpain inhibitor, calpastatin, during apoptosis.
    Cell death and differentiation, 1998, Volume: 5, Issue:12

    Calpain activity is thought to be essential for the execution of apoptotic cell death in certain experimental models. In the present study, the physiological inhibitor of calpain, calpastatin, was found to be cleaved in three different apoptotic systems. The 110-120 kDa calpastatin protein of Jurkat T-lymphocytes and U937 monocytic leukemia cells was cleaved to a 65-70 kDa form after the induction of apoptosis with anti-CD95 monoclonal antibody, staurosporine or TNF. Cleavage of calpastatin in apoptotic cells occurred simultaneously with the cleavage of the DNA repair enzyme, poly(ADP-ribose) polymerase. The caspase inhibitors VAD-cmk and IETD-fmk prevented calpastatin cleavage in all three systems. Calpain inhibitor I, however, suppressed calpastatin cleavage only during TNF-induced apoptosis. Other protease inhibitors, such as lactacystin and pepstatin A, did not confer any significant protection against apoptotic calpastatin cleavage. The results from in vitro incubations with cell lysates and purified enzymes showed that calpain I, calpain II and recombinant caspase-3, all cleaved calpastatin, with varying efficiency. In conclusion, the results of the present study suggest that caspases may cleave calpastatin and thus, regulate calpain activity during apoptotic cell death.

    Topics: Acetylcysteine; Apoptosis; Calcium-Binding Proteins; Calpain; Caspase 3; Caspases; Cysteine Proteinase Inhibitors; Enzyme Inhibitors; fas Receptor; Flow Cytometry; Humans; Jurkat Cells; Pepstatins; Protease Inhibitors; Staurosporine; Tumor Necrosis Factor-alpha; U937 Cells

1998
Specific increase in amyloid beta-protein 42 secretion ratio by calpain inhibition.
    Biochemistry, 1997, Jul-08, Volume: 36, Issue:27

    Cerebral deposition of amyloid beta-protein (Abeta) as senile plaques is a pathological hallmark of Alzheimer's disease (AD). Abeta falls into two major subspecies defined by their C-termini, Abeta40 and Abeta42, ending in Val-40 and Ala-42, respectively. Although Abeta42 accounts for only approximately 10% of secreted Abeta, Abeta42 is the predominant species accumulated in senile plaques in AD brain and appears to be the initially deposited species. Its secretion level has recently been reported to be increased in the plasma or culture media of fibroblasts from patients affected by any of early-onset familial AD (FAD). Thus, inhibition of Abeta42 production would be one of the therapeutic targets for AD. However, there is little information about the cleavage mechanism via which Abeta40 and Abeta42 are generated and its relationship to intracellular protease activity. Here, we examined by well-characterized enzyme immunoassay the effects of calpain and proteasome inhibitors on the levels of Abeta40 and Abeta42 secretion by cultured cells. A calpastatin peptide homologous to the inhibitory domain of calpastatin, an endogenous calpain specific inhibitor, induced a specific increase in secreted Abeta42 relative to the total secreted Abeta level, a characteristic of the cultured cells transfected with FAD-linked mutated genes, while a proteasome specific inhibitor, lactacystin, showed no such effect. These findings suggest that the Abeta42 secretion ratio is modulated by the calpain-calpastatin system and may point to the possibility of exploring particular compounds that inhibit Abeta42 secretion through this pathway.

    Topics: Acetylcysteine; Alzheimer Disease; Amyloid beta-Peptides; Calcimycin; Calcium-Binding Proteins; Calpain; Cell Line; Cysteine Proteinase Inhibitors; Dipeptides; Embryo, Mammalian; Humans; Kidney; Peptide Fragments; Transfection

1997
Specificities of cell permeant peptidyl inhibitors for the proteinase activities of mu-calpain and the 20 S proteasome.
    The Journal of biological chemistry, 1997, Nov-21, Volume: 272, Issue:47

    Cell-permeant peptidyl aldehydes and diazomethylketones are frequently utilized as inhibitors of regulatory intracellular proteases. In the present study the specificities of several peptidyl inhibitors for purified human mu-calpain and 20 S proteasome were investigated. Acetyl-LLnL aldehyde, acetyl-LLM aldehyde, carbobenzyloxy-LLnV aldehyde (ZLLnVal), and carbobenzyloxy-LLY-diazomethyl ketone produced half-maximum inhibition of the caseinolytic activity of mu-calpain at concentrations of 1-5 x 10(-7) M. In contrast, only ZLLnVal was a reasonably potent inhibitor of the caseinolytic activity of 20 S proteasome, producing 50% inhibition at 10(-5) M. The other inhibitors were at least 10-fold less potent, producing substantial inhibition only at near saturating concentrations in the assay buffer. Further studies with ZLLnVal demonstrated that its inhibition of the proteasome was independent of casein concentration over a 25-fold range. Proteolysis of calpastatin or lysozyme by the proteasome was half-maximally inhibited by 4 and 22 microM ZLLnVal, respectively. Thus, while other studies have shown that ZLLnVal is a potent inhibitor of the hydrophobic peptidase activity of the proteasome, it appears to be a much weaker inhibitor of its proteinase activity. The ability of the cell permeant peptidyl inhibitors to inhibit growth of the yeast Saccharomyces cerevisiae was studied because this organism expresses proteasome but not calpains. Concentrations of ZLLnVal as high as 200 microM had no detectable effect on growth rates of overnight cultures. However, yeast cell lysates prepared from these cultures contained 2 microM ZLLnVal, an amount which should have been sufficient to fully inhibit hydrophobic peptidase activity of yeast proteasome. Degradation of ubiquitinylated proteins in yeast extracts by endogenous proteasome was likewise sensitive only to high concentrations of ZLLnVal. The higher sensitivity of the proteinase activity of calpains to inhibition by the cell permeant inhibitors suggests that calpain-like activities may be targets of these inhibitors in animal cells.

    Topics: Acetylcysteine; Calcium-Binding Proteins; Calpain; Catalysis; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Diazomethane; Enzyme Precursors; Humans; Kinetics; Leupeptins; Multienzyme Complexes; Muramidase; Oligopeptides; Plant Proteins; Protease Inhibitors; Proteasome Endopeptidase Complex; Saccharomyces cerevisiae; Serine Proteinase Inhibitors; Ubiquitins

1997
Involvement of the proteasome in the programmed cell death of NGF-deprived sympathetic neurons.
    The EMBO journal, 1996, Aug-01, Volume: 15, Issue:15

    Sympathetic neurons undergo programmed cell death (PCD) upon deprivation of nerve growth factor (NGF). PCD of neurons is blocked by inhibitors of the interleukin-1beta converting enzyme (ICE)/Ced-3-like cysteine protease, indicating involvement of this class of proteases in the cell death programme. Here we demonstrate that the proteolytic activities of the proteasome are also essential in PCD of neurons. Nanomolar concentrations of several proteasome inhibitors, including the highly selective inhibitor lactacystin, not only prolonged survival of NGF-deprived neurons but also prevented processing of poly(ADP-ribose) polymerase which is known to be cleaved by an ICE/Ced-3 family member during PCD. These results demonstrate that the proteasome is a key regulator of neuronal PCD and that, within this process, it is involved upstream of proteases of the ICE/Ced-3 family. This order of events was confirmed in macrophages where lactacystin inhibited the proteolytic activation of precursor ICE and the subsequent generation of active interleukin-1beta.

    Topics: Acetylcysteine; Animals; Apoptosis; Calcium-Binding Proteins; Caspase 1; Cell Survival; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; DNA Ligases; Electrophoresis, Polyacrylamide Gel; Leupeptins; Multienzyme Complexes; Nerve Growth Factors; Neurons; Poly(ADP-ribose) Polymerases; Proteasome Endopeptidase Complex; Rats; Sympathetic Nervous System

1996