calpastatin and calpeptin
calpastatin has been researched along with calpeptin* in 21 studies
Other Studies
21 other study(ies) available for calpastatin and calpeptin
Article | Year |
---|---|
Calpain system is altered in survival motor neuron-reduced cells from in vitro and in vivo spinal muscular atrophy models.
Spinal muscular atrophy (SMA) is a severe neuromuscular disorder caused by loss of the survival motor neuron 1 (SMN1) gene. SMA is characterized by the degeneration of spinal cord motoneurons (MNs), progressive skeletal muscle atrophy, and weakness. The cellular and molecular mechanisms causing MN loss of function are only partially known. Recent advances in SMA research postulate the role of calpain protease regulating survival motor neuron (SMN) protein and the positive effect on SMA phenotype of treatment with calpain inhibitors. We analyzed the level of calpain pathway members in mice and human cellular SMA models. Results indicate an increase of calpain activity in SMN-reduced MNs. Spinal cord analysis of SMA mice treated with calpeptin, a calpain inhibitor, showed an increase of SMN, calpain, and its endogenous inhibitor calpastatin in MNs. Finally, in vitro calpeptin treatment prevented microtubule-associated protein 1A/1B-light chain 3 (LC3) increase in MNs neurites, indicating that calpain inhibition may reduce autophagosome accumulation in neuron prolongations, but not in soma. Thus, our results show that calpain activity is increased in SMA MNs and its inhibition may have a beneficial effect on SMA phenotype through the increase of SMN in spinal cord MNs. Topics: Animals; Calcium-Binding Proteins; Calpain; Carrier Proteins; Cell Differentiation; Cell Line; Cell Survival; Cells, Cultured; Dipeptides; Disease Models, Animal; Fibroblasts; Humans; Induced Pluripotent Stem Cells; Mice; Mice, Mutant Strains; Microfilament Proteins; Microtubule-Associated Proteins; Motor Neurons; Muscular Atrophy, Spinal; Proteolysis; Spinal Cord; Survival of Motor Neuron 1 Protein | 2020 |
Protective effect of S-allyl-L-cysteine against endoplasmic reticulum stress-induced neuronal death is mediated by inhibition of calpain.
Endoplasmic reticulum (ER) stress, implicated in various neurodegenerative processes, increases the level of intracellular Ca(2+) and leads to activation of calpain, a Ca(2+)-dependent cysteine protease. We have shown previously that S-allyl-L-cysteine (SAC) in aged garlic extracts significantly protects cultured rat hippocampal neurons (HPNs) against ER stress-induced neurotoxicity. The neuroprotective effect of SAC was compared with those of the related antioxidant compounds, L-cysteine (CYS) and N-acetylcysteine (NAC), on calpain activity in HPNs and also in vitro. SAC, but not CYS or NAC, reversibly restored the survival of HPNs and increased the degradation of α-spectrin, a substrate for calpain, induced by tunicamycin, a typical ER stress inducer. Activities of μ- and m-calpains in vitro were also concentration dependently suppressed by SAC, but not by CYS or NAC. At submaximal concentration, although ALLN (5 pM), which blocks the active site of calpain, and calpastatin (100 pM), an endogenous calpain-inhibitor protein, additively inhibited μ-calpain activity in vitro in combination with SAC, the effect of PD150606 (25 μM), which prevents interaction of Ca(2+) with the Ca(2+)-binding site of calpain, was unaffected by SAC. In contrast, SAC (1 mM) significantly reversed the effect of PD150606 at a concentration that elicited supramaximal inhibition (100 μM), but did not affect ALLN (1 nM)- and calpastatin (100 nM)-induced inhibition of μ-calpain activity. These results suggest that the protective effects of SAC against ER stress-induced neuronal cell death are not attributable to antioxidant activity, but to suppression of calpain through interaction with its Ca(2+)-binding site. Topics: Animals; Apoptosis; Calcium-Binding Proteins; Calpain; Cell Survival; Cells, Cultured; Cysteine; Dipeptides; Endoplasmic Reticulum Stress; Hippocampus; Leupeptins; Neurons; Neuroprotective Agents; Oxidative Stress; Rats; Rats, Wistar; Spectrin | 2014 |
Distinct regulatory functions of calpain 1 and 2 during neural stem cell self-renewal and differentiation.
Calpains are calcium regulated cysteine proteases that have been described in a wide range of cellular processes, including apoptosis, migration and cell cycle regulation. In addition, calpains have been implicated in differentiation, but their impact on neural differentiation requires further investigation. Here, we addressed the role of calpain 1 and calpain 2 in neural stem cell (NSC) self-renewal and differentiation. We found that calpain inhibition using either the chemical inhibitor calpeptin or the endogenous calpain inhibitor calpastatin favored differentiation of NSCs. This effect was associated with significant changes in cell cycle-related proteins and may be regulated by calcium. Interestingly, calpain 1 and calpain 2 were found to play distinct roles in NSC fate decision. Calpain 1 expression levels were higher in self-renewing NSC and decreased with differentiation, while calpain 2 increased throughout differentiation. In addition, calpain 1 silencing resulted in increased levels of both neuronal and glial markers, β-III Tubulin and glial fibrillary acidic protein (GFAP). Calpain 2 silencing elicited decreased levels of GFAP. These results support a role for calpain 1 in repressing differentiation, thus maintaining a proliferative NSC pool, and suggest that calpain 2 is involved in glial differentiation. Topics: Animals; Astrocytes; Biomarkers; Calcium; Calcium-Binding Proteins; Calpain; Cell Count; Cell Cycle Proteins; Cell Death; Cell Differentiation; Cell Proliferation; Dipeptides; Gene Silencing; Intermediate Filament Proteins; Mice; Nerve Tissue Proteins; Nestin; Neural Stem Cells; Neurogenesis; Neurons; Phenotype; Tubulin | 2012 |
Staphylococcus aureus activation of caspase 1/calpain signaling mediates invasion through human keratinocytes.
The USA300 strains of Staphylococcus aureus are the major cause of skin and soft tissue infection in the United States. Invasive USA300 infection has been attributed to several virulence factors, including protein A and the α-hemolysin (Hla), which cause pathology by activating host signaling cascades. Here we show that S. aureus exploits the proinflammatory bias of human keratinocytes to activate pyroptosis, a caspase 1-dependent form of inflammatory cell death, which was required for staphylococci to penetrate across a keratinocyte barrier. Keratinocyte necrosis was mediated by calpains, Ca(2+)-dependent intracellular proteases whose endogenous inhibitor, calpastatin, is targeted by Hla-induced caspase 1. Neither Panton-Valentine leukocidin nor protein A expression was essential, but inhibition of either calpain or caspase 1 activity was sufficient to prevent staphylococcal invasion across the keratinocytes. These studies suggest that pharmacological interruption of specific keratinocyte signaling cascades as well as targeting the Hla might prevent invasive skin infection by staphylococci. Topics: Apoptosis; Calcium-Binding Proteins; Calpain; Caspase 1; Caspase Inhibitors; Cysteine Proteinase Inhibitors; Dipeptides; Enzyme Activation; Humans; Keratinocytes; Methicillin-Resistant Staphylococcus aureus; Mutation; Signal Transduction; Soft Tissue Infections; Staphylococcal Infections; Staphylococcal Skin Infections; Virulence Factors | 2012 |
Effects of inhibitors on the synergistic interaction between calpain and caspase-3 during post-mortem aging of chicken meat.
Calpain has been considered to be the most important protease involved in tenderization during the conversion of muscle into meat. However, recent evidence suggests the possible involvement of the key apoptosis protease, caspase, on post-mortem tenderization. This study used inhibitors of calpain and caspase-3 to treat chicken muscle immediately after slaughter and followed the changes in caspase-3 and calpain activities together with their expression during 5 days of aging. Addition of calpain inhibitors to the system resulted in significantly higher caspase-3 activities (p < 0.01) during storage. Western blot analysis of pro-caspase-3 and α-spectrin cleavage of the 120 kDa peptide (SBDP 120) showed that the addition of calpain inhibitors resulted in the formation of higher amounts of the active form of caspase-3 compared with the control (p < 0.01). Inclusion of inhibitors of caspase-3 led to lower calpain activities (p < 0.01) and dramatically reduced the expression of calpain-1 and calpain-2 (p < 0.01). Concomitantly, this inhibition resulted in greater calpastatin expression compared with the control (p < 0.01). The findings of this investigation show that calpain prevented the activation of caspase-3, whereas caspase-3 appeared to enhance the calpain activity during post-mortem aging through inhibition of calpastatin. It is therefore suggested that there is a relationship between caspase-3 and calpain which contributes to the tenderizing process during the conversion of muscle tissue into meat. Topics: Animals; Calcium-Binding Proteins; Calpain; Caspase 3; Caspase Inhibitors; Chickens; Dipeptides; Muscle, Skeletal; Oligopeptides; Poultry; Protease Inhibitors | 2012 |
Calcium-dependent cleavage of the Na(+)/Ca(2+) exchanger by m-calpain in isolated endoplasmic reticulum.
We have recently demonstrated the localization of associated m-calpain and calpastatin in the endoplasmic reticulum (ER) of bovine pulmonary artery smooth muscle. Herein, we sought to determine the role of m-calpain on calcium-dependent proteolytic cleavage of Na(+)/Ca(2+) exchanger (NCX) in the ER. Treatment of the ER with Ca(2+) (5 mM) dissociates m-calpain-calpastatin association leading to the activation of m-calpain, which subsequently cleaves the ER integral transmembrane protein NCX1 (116 kDa) to an 82 kDa fragment. Pre-treatment of the ER with calpain inhibitors, calpeptin (10 microM) or MDL28170 (10 microM), or Ca(2+) chelator, EGTA (10 mM) does not cleave NCX1. In vitro cleavage of the ER purified NCX1 by the ER purified m-calpain also supports our finding. Cleavage of NCX1 by m-calpain in the ER may be interpreted as the main cause of intracellular Ca(2+) overload in the smooth muscle, which could be important for the manifestation of pulmonary hypertension. Topics: Animals; Blotting, Western; Calcium; Calcium-Binding Proteins; Calpain; Cattle; Dipeptides; Egtazic Acid; Electrophoresis, Polyacrylamide Gel; Endoplasmic Reticulum; Immunoprecipitation; In Vitro Techniques; Muscle, Smooth; Protein Binding; Pulmonary Artery; Sodium-Calcium Exchanger | 2010 |
Calpain modulates capacitation and acrosome reaction through cleavage of the spectrin cytoskeleton.
Research on fertilization in mammalian species has revealed that Ca(2+) is an important player in biochemical and physiological events enabling the sperm to penetrate the oocyte. Ca(2+) is a signal transducer that particularly mediates capacitation and acrosome reaction (AR). Before becoming fertilization competent, sperm must experience several molecular, biochemical, and physiological changes where Ca(2+) plays a pivotal role. Calpain-1 and calpain-2 are Ca(2+)-dependent proteases widely studied in mammalian sperm; they have been involved in capacitation and AR but little is known about their mechanism. In this work, we establish the association of calpastatin with calpain-1 and the changes undergone by this complex during capacitation in guinea pig sperm. We found that calpain-1 is relocated and translocated from cytoplasm to plasma membrane (PM) during capacitation, where it could cleave spectrin, one of the proteins of the PM-associated cytoskeleton, and facilitates AR. The aforementioned results were dependent on the calpastatin phosphorylation and the presence of extracellular Ca(2+). Our findings underline the contribution of the sperm cytoskeleton in the regulation of both capacitation and AR. In addition, our findings also reveal one of the mechanisms by which calpain and calcium exert its function in sperm. Topics: Acrosome Reaction; Animals; Blotting, Western; Calcium-Binding Proteins; Calpain; Cytoskeleton; Dipeptides; Guinea Pigs; Leupeptins; Male; Microscopy, Electron; Spectrin; Sperm Capacitation; Spermatozoa | 2010 |
mu-Calpain mediated cleavage of the Na+/Ca2+ exchanger in isolated mitochondria under A23187 induced Ca2+ stimulation.
Treatment of bovine pulmonary artery smooth muscle mitochondria with the calcium ionophore, A23187 (0.2 microM) stimulates mu-calpain activity and subsequently cleaves Na(+)/Ca(2+) exchanger (NCX). Pretreatment of the A23187 treated mitochondria with the calpain inhibitors, calpeptin or MDL28170 or with Ca(2+) chelator, EGTA does not cleave NCX. Treatment of the mitochondria with A23187 increases Ca(2+) level in the mitochondria, which subsequently dissociates mu-calpain-calpastatin association leading to the activation of mu-calpain. Immunoblot study of the A23187 treated mitochondria with the NCX polyclonal antibody indicates the degradation of mitochondrial inner membrane NCX (110kDa) resulting in the doublet of approximately 54-56kDa NCX fragments. Moreover, in vitro cleavage of mitochondrial purified NCX by mitochondrial purified mu-calpain supports our conclusion. This cleavage of NCX may be interpreted as the main cause of Ca(2+) overload and could lay a key role in the activation of apoptotic process in pulmonary smooth muscle. Topics: Animals; Calcimycin; Calcium; Calcium-Binding Proteins; Calpain; Cattle; Dipeptides; Intracellular Membranes; Mitochondria, Muscle; Mitochondrial Membranes; Muscle, Smooth, Vascular; Phosphatidylcholines; Phospholipid Ethers; Pulmonary Artery; Sodium-Calcium Exchanger | 2009 |
Calpain-dependent calpastatin cleavage regulates caspase-3 activation during apoptosis of Jurkat T cells induced by Entamoeba histolytica.
In this study, we investigated whether there is a signalling interaction between calpain and caspase-3 during apoptosis in Jurkat T cells by Entamoeba histolytica. When Jurkat cells were co-incubated with E. histolytica, phosphatidylserine externalisation and DNA fragmentation markedly increased compared with results for cells incubated with medium alone. In addition, E. histolytica strongly induced cleavage of caspases-3, -6, -7 and poly(ADP-ribose) polymerase. A rise in intracellular calcium levels and activation of calpain were seen in Jurkat cells after exposure to E. histolytica. Pretreatment of Jurkat cells with calpain inhibitor calpeptin effectively blocked E. histolytica-triggered cleavage of caspase-3 as well as calpain. In contrast, pan-caspase inhibitor did not affect E. histolytica-induced calpain activation. In addition, incubation with E. histolytica resulted in multiple fragmented bands of calpastatin, which is an endogenous inhibitor of calpain, in Jurkat T cells. Moreover, Entamoeba-induced calpastatin degradation was dramatically suppressed by pretreatment with calpeptin, but not by z-VAD-fmk. Entamoeba-induced DNA fragmentation was strongly retarded by z-VAD-fmk, but not calpeptin. Our results suggest that calpain-mediated calpastatin degradation plays a crucial role in regulation of caspase-3 activation during apoptosis of Jurkat T cells by E. histolytica. Topics: Amino Acid Chloromethyl Ketones; Animals; Apoptosis; Calcium; Calcium-Binding Proteins; Calpain; Caspase 3; Caspase Inhibitors; Dipeptides; DNA Cleavage; Entamoeba histolytica; Entamoebiasis; Enzyme Activation; Host-Parasite Interactions; Humans; Jurkat Cells; Parasitology; T-Lymphocytes | 2007 |
Characterization of the intracellular proteolytic cleavage of myocilin and identification of calpain II as a myocilin-processing protease.
MYOC, a gene involved in different types of glaucoma, encodes myocilin, a secreted glycoprotein of unknown function, consisting of an N-terminal leucine-zipper-like domain, a central linker region, and a C-terminal olfactomedin-like domain. Recently, we have shown that myocilin undergoes an intracellular endoproteolytic processing. We show herein that the proteolytic cleavage in the linker region splits the two terminal domains. The C-terminal domain is secreted to the culture medium, whereas the N-terminal domain mainly remains intracellularly retained. In transiently transfected 293T cells, the cleavage was prevented by calpain inhibitors, such as calpeptin, calpain inhibitor IV, and calpastatin. Since calpains are calcium-activated proteases, we analyzed how changes in either intra- or extracellular calcium affected the cleavage of myocilin. Intracellular ionomycin-induced calcium uptake enhanced myocilin cleavage, whereas chelation of extracellular calcium by EGTA inhibited the proteolytic processing. Calpains I and II cleaved myocilin in vitro. However, in cells in culture, only RNA interference knockdown of calpain II reduced myocilin processing. Subcellular fractionation and digestion of the obtained fractions with proteinase K showed that full-length myocilin resides in the lumen of the endoplasmic reticulum together with a subpopulation of calpain II. These data revealed that calpain II is responsible for the intracellular processing of myocilin in the lumen of the endoplasmic reticulum. We propose that this cleavage might regulate extracellular interactions of myocilin, contributing to the control of intraocular pressure. Topics: Calcium-Binding Proteins; Calpain; Cell Line; Cytoskeletal Proteins; Dipeptides; Egtazic Acid; Endopeptidase K; Eye Proteins; Glaucoma; Glycoproteins; Humans; Ionomycin; Mutation, Missense; Protein Conformation; Protein Structure, Tertiary; Transfection | 2007 |
Treatment of rats with calpain inhibitors prevents sepsis-induced muscle proteolysis independent of atrogin-1/MAFbx and MuRF1 expression.
Muscle wasting in sepsis is a significant clinical problem because it results in muscle weakness and fatigue that may delay ambulation and increase the risk for thromboembolic and pulmonary complications. Treatments aimed at preventing or reducing muscle wasting in sepsis, therefore, may have important clinical implications. Recent studies suggest that sepsis-induced muscle proteolysis may be initiated by calpain-dependent release of myofilaments from the sarcomere, followed by ubiquitination and degradation of the myofilaments by the 26S proteasome. In the present experiments, treatment of rats with one of the calpain inhibitors calpeptin or BN82270 inhibited protein breakdown in muscles from rats made septic by cecal ligation and puncture. The inhibition of protein breakdown was not accompanied by reduced expression of the ubiquitin ligases atrogin-1/MAFbx and MuRF1, suggesting that the ubiquitin-proteasome system is regulated independent of the calpain system in septic muscle. When incubated muscles were treated in vitro with calpain inhibitor, protein breakdown rates and calpain activity were reduced, consistent with a direct effect in skeletal muscle. Additional experiments suggested that the effects of BN82270 on muscle protein breakdown may, in part, reflect inhibited cathepsin L activity, in addition to inhibited calpain activity. When cultured myoblasts were transfected with a plasmid expressing the endogenous calpain inhibitor calpastatin, the increased protein breakdown rates in dexamethasone-treated myoblasts were reduced, supporting a role of calpain activity in atrophying muscle. The present results suggest that treatment with calpain inhibitors may prevent sepsis-induced muscle wasting. Topics: Animals; Calcium-Binding Proteins; Calpain; Cell Line; Cysteine Proteinase Inhibitors; Dexamethasone; Dipeptides; Gene Expression; Glycoproteins; Hydrogen Peroxide; Male; Muscle Proteins; Muscle, Skeletal; Muscular Atrophy; Myoblasts, Skeletal; Pepstatins; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Rats; Rats, Sprague-Dawley; Sepsis; SKP Cullin F-Box Protein Ligases; Transfection; Tripartite Motif Proteins; Ubiquitin-Protein Ligases | 2006 |
Homocysteine-mediated activation and mitochondrial translocation of calpain regulates MMP-9 in MVEC.
Hyperhomocysteinemia (HHcy) is associated with atherosclerosis, stroke, and dementia. Hcy causes extracellular matrix remodeling by the activation of matrix metalloproteinase-9 (MMP-9), in part, by inducing redox signaling and modulating the intracellular calcium dynamics. Calpains are the calcium-dependent cysteine proteases that are implicated in mitochondrial damage via oxidative burst. Mitochondrial abnormalities have been identified in HHcy. The mechanism of Hcy-induced extracellular matrix remodeling by MMP-9 activation via mitochondrial pathway is largely unknown. We report a novel role of calpains in mitochondrial-mediated MMP-9 activation by Hcy in cultured rat heart microvascular endothelial cells. Our observations suggested that calpain regulates Hcy-induced MMP-9 expression and activity. We showed that Hcy activates calpain-1, but not calpain-2, in a calcium-dependent manner. Interestingly, the enhanced calpain activity was not mirrored by the decreased levels of its endogenous inhibitor calpastatin. We presented evidence that Hcy induces the translocation of active calpain from cytosol to mitochondria, leading to MMP-9 activation, in part, by causing intramitochondrial oxidative burst. Furthermore, studies with pharmacological inhibitors of calpain (calpeptin and calpain-1 inhibitor), ERK (PD-98059) and the mitochondrial uncoupler FCCP suggested that calpain and ERK-1/2 are the major events within the Hcy/MMP-9 signal axis and that intramitochondrial oxidative stress regulates MMP-9 via ERK-1/2 signal cascade. Taken together, these findings determine the novel role of mitochondrial translocation of calpain-1 in MMP-9 activation during HHcy, in part, by increasing mitochondrial oxidative stress. Topics: Animals; Calcium-Binding Proteins; Calpain; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cells, Cultured; Coronary Vessels; Cytosol; Dipeptides; Endothelium, Vascular; Flavonoids; Gene Expression Regulation, Enzymologic; Homocysteine; Hyperhomocysteinemia; Matrix Metalloproteinase 9; Mitochondria; Mitogen-Activated Protein Kinase 3; Oxidative Stress; Rats; Rats, Wistar; Uncoupling Agents | 2006 |
Involvement of calpains in growth factor-mediated migration.
Previous research in our laboratory has already shown the importance of the role played by ubiquitous calpains during myoblast migration. The aim of this study was to investigate calpain expression during myoblast migration and, to enhance this phenomenon via calpain stimulation. Ubiquitous calpains are members of a large family of calcium-dependent cysteine proteases. They play an important role in numerous biological and pathological phenomena, such as signal transduction, apoptosis, cell-cycle regulation, cell spreading, adhesion, invasion, myogenesis, and motility. Myoblast migration is a crucial step in myogenesis, as it is necessary for myoblast alignment and fusion to form myotubes. This study started by examining changes in calpain expression during migration, then investigated the possibility of activating myoblast migration via the stimulation of calpain expression and/or activity. The migration rate of myoblasts overexpressing mu- or milli-calpain was quantified. The results showed that calpain overexpression dramatically inhibited myoblast migration. Growth-factor treatments were then used to enhance myoblast migration. The results showed that treatment with IGF-1, TGF-beta1, or insulin induced a major increase in migration and caused a significant increase in m-calpain expression and activity. The increase in migration was totally inhibited by adding calpeptin, a calpain-specific inhibitor. These findings suggest that milli-calpain is involved in growth factor-mediated migration. Topics: Animals; Calcium-Binding Proteins; Calpain; Caseins; Cell Movement; Dipeptides; Gene Expression; Growth Substances; Insulin; Mice; Myoblasts; Stress Fibers | 2006 |
Sepsis stimulates calpain activity in skeletal muscle by decreasing calpastatin activity but does not activate caspase-3.
We examined the influence of sepsis on the expression and activity of the calpain and caspase systems in skeletal muscle. Sepsis was induced in rats by cecal ligation and puncture (CLP). Control rats were sham operated. Calpain activity was determined by measuring the calcium-dependent hydrolysis of casein and by casein zymography. The activity of the endogenous calpain inhibitor calpastatin was measured by determining the inhibitory effect on calpain activity in muscle extracts. Protein levels of mu- and m-calpain and calpastatin were determined by Western blotting, and calpastatin mRNA was measured by real-time PCR. Caspase-3 activity was determined by measuring the hydrolysis of the fluorogenic caspase-3 substrate Ac-DEVD-AMC and by determining protein and mRNA expression for caspase-3 by Western blotting and real-time PCR, respectively. In addition, the role of calpains and caspase-3 in sepsis-induced muscle protein breakdown was determined by measuring protein breakdown rates in the presence of specific inhibitors. Sepsis resulted in increased muscle calpain activity caused by reduced calpastatin activity. In contrast, caspase-3 activity, mRNA levels, and activated caspase-3 29-kDa fragment were not altered in muscle from septic rats. Sepsis-induced muscle proteolysis was blocked by the calpain inhibitor calpeptin but was not influenced by the caspase-3 inhibitor Ac-DEVD-CHO. The results suggest that sepsis-induced muscle wasting is associated with increased calpain activity, secondary to reduced calpastatin activity, and that caspase-3 activity is not involved in the catabolic response to sepsis. Topics: Animals; Bacterial Infections; Calcium-Binding Proteins; Calpain; Caspase 3; Caspases; Cells, Cultured; Cysteine Proteinase Inhibitors; Dipeptides; Enzyme Activation; Male; Muscle Fibers, Skeletal; Muscle Proteins; Muscle, Skeletal; Oligopeptides; Rats; Rats, Sprague-Dawley; RNA, Messenger | 2005 |
Myoblast migration is regulated by calpain through its involvement in cell attachment and cytoskeletal organization.
Cell migration is a fundamental cellular function particularly during skeletal muscle development. Ubiquitous calpains are well known to play a pivotal role during muscle differentiation, especially at the onset of fusion. In this study, the possible positive regulation of myoblast migration by calpains, a crucial step required to align myoblasts to permit them to fuse, was investigated. Inhibition of calpain activity by different pharmacological inhibitors argues for the involvement of these proteinases during the migration of myoblasts. Moreover, a clonal cell line that fourfold overexpresses calpastatin, the endogenous inhibitor of calpains, and that exhibits deficient calpain activities was obtained. The results showed that the migratory capacity of C2C12 and fusion into multinucleated myotubes were completely prevented in these clonal cells. Calpastatin-overexpressing myoblasts unable to migrate were characterized by rounded morphology, the loss of membrane extensions, the disorganization of stress fibers and exhibited a major defect in new adhesion formation. Surprisingly, the proteolytic patterns of desmin, talin, vinculin, focal adhesion kinase (FAK) and ezrin, radixin, moesin (ERM) proteins are the same in calpastatin-overexpressing myoblasts as compared to control cells. However, an important accumulation of myristoylated alanine-rich C kinase substrate (MARCKS) was observed in cells showing a reduced calpain activity, suggesting that the proteolysis of this actin-binding protein is calpain-dependent and could be involved in both myoblast adhesion and migration. Topics: Animals; Calcium-Binding Proteins; Calpain; Cell Adhesion; Cell Fusion; Cell Line; Cell Movement; Clone Cells; Cysteine Proteinase Inhibitors; Cytoskeleton; Dipeptides; Dose-Response Relationship, Drug; Glucosidases; Intracellular Signaling Peptides and Proteins; Leupeptins; Membrane Proteins; Mice; Muscle Fibers, Skeletal; Myoblasts; Myristoylated Alanine-Rich C Kinase Substrate; Oligopeptides; Phosphoproteins; Stress Fibers | 2004 |
Potential m-calpain substrates during myoblast fusion.
Many studies have demonstrated that m-calpain was implicated in cell membrane reorganization-related phenomena during fusion via a regulation by calpastatin, the specific Ca2+-dependent proteolytic inhibitor. However, the real biological role of this protease is unclear because many targeted proteins are still unknown. Using different digestion experiments we have demonstrated that desmin, vimentin, talin, and fibronectin represent very good substrates for this proteinase capable of cleaving them in fragments which are immediately degraded by other enzymatic systems. Concerning intermediate filaments, we showed that during the phenomenon of fusion, the amount of desmin was significantly reduced while the concentration of vimentin presented a steady level. On the other hand, we have conducted biological assays on cultured myoblasts supplemented by exogenous factors such as calpain inhibitors or antisense oligonucleotides capable of stimulating or inhibiting m-calpain activity. The effect of such factors on fusion and concomitantly on the targeted substrates was analyzed and quantified. When m-calpain activity and myoblast fusion were prevented by addition of calpain inhibitors entering the cells, the amounts of desmin, talin, and fibronectin were increased, whereas the amount of vimentin was unchanged. Using antisense strategy, similar results were obtained. In addition, when the phenomenon of fusion was enhanced by preventing calpastatin synthesis, the amounts of desmin, talin, and fibronectin were significantly reduced. Taken together, these results support the hypothesis that m-calpain is involved in myoblast fusion by cleaving certain proteins identified here. This cleavage could modify membrane and cytoskeleton organization for the myoblasts to fuse. Topics: Animals; Calcium-Binding Proteins; Calpain; Cell Extracts; Cell Fusion; Cells, Cultured; Cysteine Proteinase Inhibitors; Desmin; Dipeptides; Octoxynol; Oligonucleotides, Antisense; Rats; Rats, Wistar; Substrate Specificity; Vimentin | 1999 |
Possible involvement of m-calpain in vascular smooth muscle cell proliferation.
Vascular smooth muscle cell (VSMC) proliferation still remains a poorly understood process, although it is believed to play a critical role in pathological states, including atherosclerosis and hypertension. Several reports have suggested that proteases may be directly involved in this process; however, it was still unclear which protease is responsible for VSMC proliferation. In this study, by use of a cell-permeable calpain inhibitor (calpeptin; benzyloxycarbonyl-Leu-nLeu-H), its analogue (benzyloxycarbonyl-Leu-Met-H), the cell-impermeable serine protease inhibitor leupeptin, and antisense oligonucleotide against m-calpain to inhibit proliferation of primarily cultured human VSMCs, we investigated whether calcium-activated neutral protease (calpain) is involved in VSMC proliferation. Calpeptin and its analogue, more specific for m-calpain, equally inhibited the proliferation of VSMCs in a dose-related manner, whereas a more limited antiproliferative effect was observed in leupeptin-treated VSMCs. Antisense oligonucleotide against m-calpain, but not scrambled antisense, dose-dependently inhibited m-calpain expression and proliferation of VSMCs. Maximal inhibition was an approximately 50% reduction of cell number and m-calpain antigen observed at 50 micromol/L of antisense oligonucleotide. Calpeptin or antisense oligonucleotide against m-calpain increased the expression of the endogenous calpain substrate pp125FAK (focal adhesion kinase), whereas the expression of the endogenous calpain inhibitor calpastatin was not affected. These results suggest that the proliferation of VSMCs requires protease activity, some of which is due to m-calpain. Topics: Calcium-Binding Proteins; Calpain; Cell Adhesion Molecules; Cell Division; Dipeptides; DNA; Flow Cytometry; Focal Adhesion Kinase 1; Focal Adhesion Protein-Tyrosine Kinases; Humans; Isomerism; Muscle, Smooth, Vascular; Oligonucleotides, Antisense; Protease Inhibitors; Protein-Tyrosine Kinases | 1998 |
Specific increase in amyloid beta-protein 42 secretion ratio by calpain inhibition.
Cerebral deposition of amyloid beta-protein (Abeta) as senile plaques is a pathological hallmark of Alzheimer's disease (AD). Abeta falls into two major subspecies defined by their C-termini, Abeta40 and Abeta42, ending in Val-40 and Ala-42, respectively. Although Abeta42 accounts for only approximately 10% of secreted Abeta, Abeta42 is the predominant species accumulated in senile plaques in AD brain and appears to be the initially deposited species. Its secretion level has recently been reported to be increased in the plasma or culture media of fibroblasts from patients affected by any of early-onset familial AD (FAD). Thus, inhibition of Abeta42 production would be one of the therapeutic targets for AD. However, there is little information about the cleavage mechanism via which Abeta40 and Abeta42 are generated and its relationship to intracellular protease activity. Here, we examined by well-characterized enzyme immunoassay the effects of calpain and proteasome inhibitors on the levels of Abeta40 and Abeta42 secretion by cultured cells. A calpastatin peptide homologous to the inhibitory domain of calpastatin, an endogenous calpain specific inhibitor, induced a specific increase in secreted Abeta42 relative to the total secreted Abeta level, a characteristic of the cultured cells transfected with FAD-linked mutated genes, while a proteasome specific inhibitor, lactacystin, showed no such effect. These findings suggest that the Abeta42 secretion ratio is modulated by the calpain-calpastatin system and may point to the possibility of exploring particular compounds that inhibit Abeta42 secretion through this pathway. Topics: Acetylcysteine; Alzheimer Disease; Amyloid beta-Peptides; Calcimycin; Calcium-Binding Proteins; Calpain; Cell Line; Cysteine Proteinase Inhibitors; Dipeptides; Embryo, Mammalian; Humans; Kidney; Peptide Fragments; Transfection | 1997 |
Identification of mu-, m-calpains and calpastatin and capture of mu-calpain activation in endothelial cells.
The presence of the calpain-calpastatin system in human umbilical vein endothelial cells (HUVEC) was investigated by means of ion exchange chromatography, Western blot analysis, and Northern blot analysis. On DEAE anion exchange chromatography, calpain and calpastatin activities were eluted at approximately 0.30 M and 0.15-0.25 M NaCl, respectively. For half-maximal activity, the protease required 800 microM Ca2+, comparable to the Ca2+ requirement of m-calpain. By Western blot analysis, the large subunit of mu-calpain (80 kDa) was found to be eluted with calpastatin (110 kDa). Both the large subunit of m-calpain (80 kDa) and calpastatin were detected in the respective active fractions. By Northern blot analysis, mRNAs for large subunits of mu- and m-calpains were detected in single bands, each corresponding to approximately 3.5 Kb. Calpastatin mRNA was observed in two bands corresponding to approximately 3.8 and 2.6 Kb. Furthermore, the activation of mu-calpain in HUVEC by a calcium ionophore was examined, using an antibody specifically recognizing an autolytic intermediate form of mu-calpain large subunit (78 kDa). Both talin and filamin of HUVEC were proteolyzed in a calcium-dependent manner, and the reactions were inhibited by calpeptin, a cell-permeable calpain specific inhibitor. Proteolysis of the cytoskeleton was preceded by the appearance of the autolytic intermediate form of mu-calpain, while the fully autolyzed postautolysis form of mu-calpain (76 kDa) remained below detectable levels at all time points examined. These results indicate that the calpain-calpastatin system is present in human endothelial cells and that mu-calpain may be involved in endothelial cell function mediated by Ca2+ via the limited proteolysis of various proteins. Topics: Antibody Specificity; Blotting, Western; Calcimycin; Calcium; Calcium-Binding Proteins; Calpain; Cells, Cultured; Chromatography, DEAE-Cellulose; Cytoskeletal Proteins; Dipeptides; Endothelium, Vascular; Enzyme Activation; Enzyme Precursors; Extracellular Space; Humans; Hydrolysis; RNA, Messenger; Umbilical Veins | 1997 |
The role of calpastatin (the specific calpain inhibitor) in myoblast differentiation and fusion.
Using red cells as an experimental model, we previously showed that a limited degradation of certain membrane proteins by calpain (Ca2+-activated thiol protease) was a necessary prerequisite for cell fusion and that fusibility depended on the ratio of calpain to its endogenous inhibitor calpastatin. Here we show that fusion of rat L8 line myoblasts is accompanied by a dramatic change in the calpain/calpastatin ratio. The protein levels of mu-calpain and m-calpain increased only slightly during myoblast differentiation. In contrast, calpastatin diminished by a factor of 10 at the stages of myoblast alignment and start of fusion, allowing calpain activity to become apparent. Calpastatin reappeared at a late stage of myoblast fusion (myotube formation). The results indicate that calpastatin is regulated during myoblast differentiation, and that its diminution is important in determining the activity of the calpain required for myoblast fusion. Topics: Animals; Calcium-Binding Proteins; Calpain; Cell Differentiation; Cell Fusion; Cell Line; Cysteine Proteinase Inhibitors; Dipeptides; Egtazic Acid; Electrophoresis, Polyacrylamide Gel; Erythrocytes; Kinetics; Molecular Weight; Muscle Fibers, Skeletal; Rats | 1996 |
Susceptibility of myelin proteins to a neutral endoproteinase: the degradation of myelin basic protein (MBP) and P2 protein by purified bovine brain multicatalytic proteinase complex (MPC).
Multicatalytic proteinase complex (MPC) was isolated from bovine brain and the susceptibility of myelin basic protein (MBP) and P2 protein of bovine central and peripheral nervous system was examined. SDS-polyacrylamide electrophoretic analysis of purified MPC revealed protein bands of molecular weight ranging from 22-35 kDa. The enzyme is activated by SDS at a concentration less than 0.01%. Upon incubation with MPC, purified MBP and P2 proteins were degraded into smaller fragments. There was a 57% and 100% loss of MBP at 2 and 6 hours of incubation. The P2 protein which is not susceptible to any endogenous non-lysosomal enzyme thus far studied was digested into small peptide fragments only in the presence of SDS (0.01%) and not in its absence. These results indicate that MPC which is active at physiological conditions may have a role in the turnover of myelin proteins and in demyelinating diseases. Topics: Amino Acid Sequence; Animals; Brain; Calcium-Binding Proteins; Caseins; Cattle; Cysteine Endopeptidases; Detergents; Dipeptides; Electrophoresis, Polyacrylamide Gel; Enzyme Activation; Immunoblotting; Iodoacetates; Iodoacetic Acid; Molecular Weight; Multienzyme Complexes; Myelin Basic Protein; Myelin P2 Protein; Protease Inhibitors; Proteasome Endopeptidase Complex | 1992 |