calpain-inhibitor-iii and calpeptin

calpain-inhibitor-iii has been researched along with calpeptin* in 14 studies

Other Studies

14 other study(ies) available for calpain-inhibitor-iii and calpeptin

ArticleYear
The MARCKS protein amount is differently regulated by calpain during toxic effects of methylmercury between SH-SY5Y and EA.hy926 cells.
    The Journal of veterinary medical science, 2017, Dec-06, Volume: 79, Issue:12

    Methylmercury (MeHg) is an environmental pollutant that shows severe toxicity to humans and animals. However, the molecular mechanisms mediating MeHg toxicity are not completely understood. We have previously reported that the MARCKS protein is involved in the MeHg toxicity to SH-SY5Y neuroblastoma and EA.hy926 vascular endothelial cell lines. In addition, calpain, a Ca

    Topics: Calcium; Calpain; Cell Line; Cell Line, Tumor; Cell Survival; Cysteine Proteinase Inhibitors; Dipeptides; Gene Knockdown Techniques; Humans; Intracellular Signaling Peptides and Proteins; Methylmercury Compounds; Myristoylated Alanine-Rich C Kinase Substrate; Proteolysis; Signal Transduction

2017
Differential role of calpain-dependent protein cleavage in intermediate and long-term operant memory in Aplysia.
    Neurobiology of learning and memory, 2017, Volume: 137

    In addition to protein synthesis, protein degradation or protein cleavage may be necessary for intermediate (ITM) and long-term memory (LTM) to remove molecular constraints, facilitate persistent kinase activity and modulate synaptic plasticity. Calpains, a family of conserved calcium dependent cysteine proteases, modulate synaptic function through protein cleavage. We used the marine mollusk Aplysia californica to investigate the in vivo role of calpains during intermediate and long-term operant memory formation using the learning that food is inedible (LFI) paradigm. A single LFI training session, in which the animal associates a specific netted seaweed with the failure to swallow, generates short (30min), intermediate (4-6h) and long-term (24h) memory. Using the calpain inhibitors calpeptin and MDL-28170, we found that ITM requires calpain activity for induction and consolidation similar to the previously reported requirements for persistent protein kinase C activity in intermediate-term LFI memory. The induction of LTM also required calpain activity. In contrast to ITM, calpain activity was not necessary for the molecular consolidation of LTM. Surprisingly, six hours after LFI training we found that calpain activity was necessary for LTM, although this is a time at which neither persistent PKC activity nor protein synthesis is required for the maintenance of long-term LFI memory. These results demonstrate that calpains function in multiple roles in vivo during associative memory formation.

    Topics: Animals; Aplysia; Association Learning; Calpain; Conditioning, Operant; Cysteine Proteinase Inhibitors; Dipeptides; Memory

2017
Calpain-10 Activity Underlies Angiotensin II-Induced Aldosterone Production in an Adrenal Glomerulosa Cell Model.
    Endocrinology, 2015, Volume: 156, Issue:6

    Aldosterone is a steroid hormone important in the regulation of blood pressure. Aberrant production of aldosterone results in the development and progression of diseases including hypertension and congestive heart failure; therefore, a complete understanding of aldosterone production is important for developing more effective treatments. Angiotensin II (AngII) regulates steroidogenesis, in part through its ability to increase intracellular calcium levels. Calcium can activate calpains, proteases classified as typical or atypical based on the presence or absence of penta-EF-hands, which are involved in various cellular responses. We hypothesized that calpain, in particular calpain-10, is activated by AngII in adrenal glomerulosa cells and underlies aldosterone production. Our studies showed that pan-calpain inhibitors reduced AngII-induced aldosterone production in 2 adrenal glomerulosa cell models, primary bovine zona glomerulosa and human adrenocortical carcinoma (HAC15) cells, as well as CYP11B2 expression in the HAC15 cells. Although AngII induced calpain activation in these cells, typical calpain inhibitors had no effect on AngII-elicited aldosterone production, suggesting a lack of involvement of classical calpains in this process. However, an inhibitor of the atypical calpain, calpain-10, decreased AngII-induced aldosterone production. Consistent with this result, small interfering RNA (siRNA)-mediated knockdown of calpain-10 inhibited aldosterone production and CYP11B2 expression, whereas adenovirus-mediated overexpression of calpain-10 resulted in increased AngII-induced aldosterone production. Our results indicate that AngII-induced activation of calpain-10 in glomerulosa cells underlies aldosterone production and identify calpain-10 or its downstream pathways as potential targets for the development of drug therapies for the treatment of hypertension.

    Topics: Aldosterone; Angiotensin II; Animals; Calpain; Cattle; Cell Line, Tumor; Cells, Cultured; Dipeptides; Humans; Hydrocortisone; Zona Glomerulosa

2015
Cisplatin-induced apoptosis inhibits autophagy, which acts as a pro-survival mechanism in human melanoma cells.
    PloS one, 2013, Volume: 8, Issue:2

    The interplay between a non-lethal autophagic response and apoptotic cell death is still a matter of debate in cancer cell biology. In the present study performed on human melanoma cells, we investigate the role of basal or stimulated autophagy in cisplatin-induced cytotoxicity, as well as the contribution of cisplatin-induced activation of caspases 3/7 and conventional calpains. The results show that, while down-regulating Beclin-1, Atg14 and LC3-II, cisplatin treatment inhibits the basal autophagic response, impairing a physiological pro-survival response. Consistently, exogenously stimulated autophagy, obtained with trehalose or calpains inhibitors (MDL-28170 and calpeptin), protects from cisplatin-induced apoptosis, and such a protection is reverted by inhibiting autophagy with 3-methyladenine or ATG5 silencing. In addition, during trehalose-stimulated autophagy, the cisplatin-induced activation of calpains is abrogated, suggesting the existence of a feedback loop between the autophagic process and calpains. On the whole, our results demonstrate that in human melanoma cells autophagy may function as a beneficial stress response, hindered by cisplatin-induced death mechanisms. In a therapeutic perspective, these findings suggest that the efficacy of cisplatin-based polychemotherapies for melanoma could be potentiated by inhibitors of autophagy.

    Topics: Adaptor Proteins, Vesicular Transport; Adenine; Antimetabolites, Antineoplastic; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Autophagy-Related Proteins; Beclin-1; Caspase 3; Caspase 7; Cell Line, Tumor; Cell Survival; Cisplatin; Cysteine Proteinase Inhibitors; Dipeptides; Feedback, Physiological; Gene Expression Regulation, Neoplastic; Humans; Melanoma; Membrane Proteins; Microtubule-Associated Proteins; Signal Transduction; Trehalose

2013
Dual mechanism of integrin αIIbβ3 closure in procoagulant platelets.
    The Journal of biological chemistry, 2013, May-10, Volume: 288, Issue:19

    Inactivation of integrin αIIbβ3 reverses platelet aggregate formation upon coagulation.. Platelets from patient (Scott) and mouse (Capn1(-/-) and Ppif(-/-)) blood reveal a dual mechanism of αIIbβ3 inactivation: by calpain-2 cleavage of integrin-associated proteins and by cyclophilin D/TMEM16F-dependent phospholipid scrambling.. These data provide novel insight into the switch mechanisms from aggregating to procoagulant platelets. Aggregation of platelets via activated integrin αIIbβ3 is a prerequisite for thrombus formation. Phosphatidylserine-exposing platelets with a key role in the coagulation process disconnect from a thrombus by integrin inactivation via an unknown mechanism. Here we show that αIIbβ3 inactivation in procoagulant platelets relies on a sustained high intracellular Ca(2+), stimulating intracellular cleavage of the β3 chain, talin, and Src kinase. Inhibition of calpain activity abolished protein cleavage, but only partly suppressed αIIbβ3 inactivation. Integrin αIIbβ3 inactivation was unchanged in platelets from Capn1(-/-) mice, suggesting a role of the calpain-2 isoform. Scott syndrome platelets, lacking the transmembrane protein TMEM16F and having low phosphatidylserine exposure, displayed reduced αIIbβ3 inactivation with the remaining activity fully dependent on calpain. In platelets from Ppif(-/-) mice, lacking mitochondrial permeability transition pore (mPTP) formation, agonist-induced phosphatidylserine exposure and αIIbβ3 inactivation were reduced. Treatment of human platelets with cyclosporin A gave a similar phenotype. Together, these data point to a dual mechanism of αIIbβ3 inactivation via calpain(-2) cleavage of integrin-associated proteins and via TMEM16F-dependent phospholipid scrambling with an assistant role of mPTP formation.

    Topics: Animals; Anoctamins; Blood Platelets; Calcium Signaling; Calpain; CD36 Antigens; Cell Membrane; Crotalid Venoms; Dipeptides; Humans; Lectins, C-Type; Mice; Mice, 129 Strain; Mice, Inbred C57BL; Mice, Knockout; Mitochondria; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Phosphatidylserines; Phospholipid Transfer Proteins; Platelet Aggregation; Platelet Glycoprotein GPIIb-IIIa Complex; Protein Structure, Quaternary; Proteolysis; src-Family Kinases; Talin; Thrombin

2013
Effects of inhibitors on the synergistic interaction between calpain and caspase-3 during post-mortem aging of chicken meat.
    Journal of agricultural and food chemistry, 2012, Aug-29, Volume: 60, Issue:34

    Calpain has been considered to be the most important protease involved in tenderization during the conversion of muscle into meat. However, recent evidence suggests the possible involvement of the key apoptosis protease, caspase, on post-mortem tenderization. This study used inhibitors of calpain and caspase-3 to treat chicken muscle immediately after slaughter and followed the changes in caspase-3 and calpain activities together with their expression during 5 days of aging. Addition of calpain inhibitors to the system resulted in significantly higher caspase-3 activities (p < 0.01) during storage. Western blot analysis of pro-caspase-3 and α-spectrin cleavage of the 120 kDa peptide (SBDP 120) showed that the addition of calpain inhibitors resulted in the formation of higher amounts of the active form of caspase-3 compared with the control (p < 0.01). Inclusion of inhibitors of caspase-3 led to lower calpain activities (p < 0.01) and dramatically reduced the expression of calpain-1 and calpain-2 (p < 0.01). Concomitantly, this inhibition resulted in greater calpastatin expression compared with the control (p < 0.01). The findings of this investigation show that calpain prevented the activation of caspase-3, whereas caspase-3 appeared to enhance the calpain activity during post-mortem aging through inhibition of calpastatin. It is therefore suggested that there is a relationship between caspase-3 and calpain which contributes to the tenderizing process during the conversion of muscle tissue into meat.

    Topics: Animals; Calcium-Binding Proteins; Calpain; Caspase 3; Caspase Inhibitors; Chickens; Dipeptides; Muscle, Skeletal; Oligopeptides; Poultry; Protease Inhibitors

2012
Neuroprotective effects of MAPK/ERK1/2 and calpain inhibitors on lactacystin-induced cell damage in primary cortical neurons.
    Neurotoxicology, 2011, Volume: 32, Issue:6

    The dysfunction of the proteasome system is implicated in the pathomechanism of several chronic neurodegenerative diseases. Lactacystin (LC), an irreversible proteasome inhibitor, induces cell death in primary cortical neurons, however, the molecular mechanisms of its neurotoxic action has been only partially unraveled. In this study we aimed to elucidate an involvement of the key enzymatic pathways responsible for LC-induced neuronal cell death. Incubation of primary cortical neurons with LC (0.25-50 μg/ml) evoked neuronal cell death in concentration- and time-dependent manner. Lactacystin (2.5 μg/ml; 6.6μM) enhanced caspase-3 activity, but caspase-3 inhibitor, Ac-DEVD-CHO did not attenuate the LC-evoked cell damage. Western blot analysis showed a time-dependent, prolonged activation of MAPK/ERK1/2 pathway after LC exposure. Moreover, inhibitors of MAPK/ERK1/2 signaling, U0126 and PD98052 attenuated the LC-evoked cell death. We also found that LC-treatment resulted in the induction of calpains and calpain inhibitors (MDL28170 and calpeptin) protected neurons against the LC-induced cell damage. Neuroprotective action of MAPK/ERK1/2 and calpain inhibitors were connected with attenuation of LC-induced DNA fragmentation measured by Hoechst 33342 staining and TUNEL assay. However, only MAPK/ERK1/2 but not calpain inhibitors, attenuated the LC-induced AIF (apoptosis inducing factor) release. Further studies showed no synergy between neuroprotective effects of MAPK/ERK1/2 and calpain inhibitors given in combination when compared to their effects alone. The obtained data provided evidence for neuroprotective potency of MAPK/ERK1/2 and calpain, but not caspase-3 inhibition against the neurotoxic effects of LC in primary cortical neurons and give rationale for using these inhibitors in the treatment of neurodegenerative diseases connected with proteasome dysfunction.

    Topics: Acetylcysteine; Animals; Apoptosis; Blotting, Western; Butadienes; Calpain; Caspase 3; Caspase Inhibitors; Cells, Cultured; Cerebral Cortex; Cysteine Proteinase Inhibitors; Cytoprotection; Dipeptides; Dose-Response Relationship, Drug; Enzyme Activation; Gestational Age; In Situ Nick-End Labeling; Mice; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Neurons; Neuroprotective Agents; Nitriles; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Kinase Inhibitors; Signal Transduction; Spectrin; Time Factors

2011
Calcium-dependent cleavage of the Na(+)/Ca(2+) exchanger by m-calpain in isolated endoplasmic reticulum.
    Journal of biochemistry, 2010, Volume: 147, Issue:2

    We have recently demonstrated the localization of associated m-calpain and calpastatin in the endoplasmic reticulum (ER) of bovine pulmonary artery smooth muscle. Herein, we sought to determine the role of m-calpain on calcium-dependent proteolytic cleavage of Na(+)/Ca(2+) exchanger (NCX) in the ER. Treatment of the ER with Ca(2+) (5 mM) dissociates m-calpain-calpastatin association leading to the activation of m-calpain, which subsequently cleaves the ER integral transmembrane protein NCX1 (116 kDa) to an 82 kDa fragment. Pre-treatment of the ER with calpain inhibitors, calpeptin (10 microM) or MDL28170 (10 microM), or Ca(2+) chelator, EGTA (10 mM) does not cleave NCX1. In vitro cleavage of the ER purified NCX1 by the ER purified m-calpain also supports our finding. Cleavage of NCX1 by m-calpain in the ER may be interpreted as the main cause of intracellular Ca(2+) overload in the smooth muscle, which could be important for the manifestation of pulmonary hypertension.

    Topics: Animals; Blotting, Western; Calcium; Calcium-Binding Proteins; Calpain; Cattle; Dipeptides; Egtazic Acid; Electrophoresis, Polyacrylamide Gel; Endoplasmic Reticulum; Immunoprecipitation; In Vitro Techniques; Muscle, Smooth; Protein Binding; Pulmonary Artery; Sodium-Calcium Exchanger

2010
mu-Calpain mediated cleavage of the Na+/Ca2+ exchanger in isolated mitochondria under A23187 induced Ca2+ stimulation.
    Archives of biochemistry and biophysics, 2009, Volume: 482, Issue:1-2

    Treatment of bovine pulmonary artery smooth muscle mitochondria with the calcium ionophore, A23187 (0.2 microM) stimulates mu-calpain activity and subsequently cleaves Na(+)/Ca(2+) exchanger (NCX). Pretreatment of the A23187 treated mitochondria with the calpain inhibitors, calpeptin or MDL28170 or with Ca(2+) chelator, EGTA does not cleave NCX. Treatment of the mitochondria with A23187 increases Ca(2+) level in the mitochondria, which subsequently dissociates mu-calpain-calpastatin association leading to the activation of mu-calpain. Immunoblot study of the A23187 treated mitochondria with the NCX polyclonal antibody indicates the degradation of mitochondrial inner membrane NCX (110kDa) resulting in the doublet of approximately 54-56kDa NCX fragments. Moreover, in vitro cleavage of mitochondrial purified NCX by mitochondrial purified mu-calpain supports our conclusion. This cleavage of NCX may be interpreted as the main cause of Ca(2+) overload and could lay a key role in the activation of apoptotic process in pulmonary smooth muscle.

    Topics: Animals; Calcimycin; Calcium; Calcium-Binding Proteins; Calpain; Cattle; Dipeptides; Intracellular Membranes; Mitochondria, Muscle; Mitochondrial Membranes; Muscle, Smooth, Vascular; Phosphatidylcholines; Phospholipid Ethers; Pulmonary Artery; Sodium-Calcium Exchanger

2009
Specific blockage of ligand-induced degradation of the Ah receptor by proteasome but not calpain inhibitors in cell culture lines from different species.
    Biochemical pharmacology, 2007, Jun-30, Volume: 74, Issue:1

    To firmly establish the pathway involved in ligand-induced degradation of the AHR, cell lines derived from mouse rat or human tissues were exposed to inhibitors specific to the proteasome or calpain proteases and exposed to TCDD. The level of endogenous AHR and CYP1A1 protein was then evaluated by quantitative Western blotting. Treatment of cells with the calpain inhibitors: calpeptin, calpain inhibitor III, or PD150606 either individually or in combinations up to 75 microM did not reduce TCDD-induced degradation of the AHR, the induction of endogenous CYP1A1 or the nuclear accumulation of the AHR. The activity of the inhibitors was verified with an in vivo calpain assay. In contrast, exposure of cells to the specific proteasome inhibitors: epoxomicin (1-5 microM), proteasome inhibitor I (5-10 microM) or lactacystin (5-15 microM) completely inhibited TCDD-induced degradation of the AHR. Inhibition of AHR degradation with these compounds did not reduce the induction of endogenous CYP1A1. In addition, exposure of the Hepa-1 line to the various proteasome inhibitors caused an accumulation of the AHR in the nucleus in the absence of TCDD exposure. Finally, Western blot analysis of the DNA bound AHR showed that its molecular mass was unchanged in comparison to the unliganded (cytoplasmic) AHR. Thus, these studies conclusively implicate the proteasome and not calpain proteases in the ligand-induced degradation of the mouse, rat and human AHR and suggest that the pharmacological use of proteasome inhibitors may impact the time course and magnitude of gene regulatory events mediated through the AHR.

    Topics: Acetylcysteine; Acrylates; Animals; Cell Line, Tumor; Cell Nucleus; Cysteine Proteinase Inhibitors; Cytochrome P-450 CYP1A1; Dipeptides; Dose-Response Relationship, Drug; Down-Regulation; Drug Antagonism; Drug Combinations; Environmental Pollutants; Humans; Mice; Oligopeptides; Polychlorinated Dibenzodioxins; Rats; Receptors, Aryl Hydrocarbon

2007
A key role for calpains in retinal ganglion cell death.
    Investigative ophthalmology & visual science, 2007, Volume: 48, Issue:12

    The purpose of this study was to examine the importance of calpains in retinal ganglion cell (RGC) apoptosis and the protection afforded by calpain inhibitors against cell death.. Two different models of RGC apoptosis were used, namely the RGC-5 cell line after either intracellular calcium influx or serum withdrawal and retinal explant culture involving optic nerve axotomy. Flow cytometry analysis with Annexin V/PI staining was used to identify RGC-5 cells undergoing apoptosis after treatment. TdT-mediated dUTP nick end labeling (TUNEL) was used to identify cells undergoing apoptosis in retinal explant sections under various conditions. Serial sectioning was used to isolate the cell population of the ganglion cell layer (GCL). Western blotting was used to demonstrate calpain cleavage and activity by detecting cleaved substrates.. In the RGC-5 cell line, the authors reported the activation of mu-calpain and m-calpain after serum starvation and calcium ionophore treatment, with concurrent cleavage of known calpain substrates. They found that the inhibition of calpains leads to the protection of cells from apoptosis. In the second model, after a serial sectioning method to isolate the cells of the ganglion cell layer (GCL) on a retinal explant paradigm, protein analysis indicated the activation of calpains after axotomy, with concomitant cleavage of calpain substrates. The authors found that inhibition of calpains significantly protected cells in the GCL from cell death.. These results suggest that calpains are crucial for apoptosis in RGCs after calcium influx, serum starvation, and optic nerve injury.

    Topics: Animals; Annexin A5; Apoptosis; Axotomy; Blotting, Western; Calcimycin; Calcium; Calpain; Cell Survival; Cells, Cultured; Cysteine Proteinase Inhibitors; Dipeptides; Flow Cytometry; Glaucoma; In Situ Nick-End Labeling; Mice; Mice, Inbred C57BL; Optic Nerve; Organ Culture Techniques; Propidium; Retina; Retinal Ganglion Cells

2007
Glutamate-induced protease-mediated loss of plasma membrane Ca2+ pump activity in rat hippocampal neurons.
    Journal of neurochemistry, 2006, Volume: 98, Issue:5

    Ca2+ dysregulation is a hallmark of excitotoxicity, a process that underlies multiple neurodegenerative disorders. The plasma membrane Ca2+ ATPase (PMCA) plays a major role in clearing Ca2+ from the neuronal cytoplasm. Here, we show that the rate of PMCA-mediated Ca2+ efflux from rat hippocampal neurons decreased following treatment with an excitotoxic concentration of glutamate. PMCA-mediated Ca2+ extrusion following a brief train of action potentials exhibited an exponential decay with a mean time constant (tau) of 8.8 +/- 0.2 s. Four hours following the start of a 30 min treatment with 200 microm glutamate, a second population of cells emerged with slowed recovery kinetics (tau = 16.5 +/- 0.3 s). Confocal imaging of cells expressing an enhanced green fluorescent protein (EGFP)-PMCA4b fusion protein revealed that glutamate treatment internalized EGFP and that cells with reduced plasma membrane fluorescence had impaired Ca2+ clearance. Treatment with inhibitors of the Ca2+-activated protease calpain protected PMCA function and prevented EGFP-PMCA internalization. PMCA internalization was triggered by activation of NMDA receptors and was less pronounced for a non-toxic concentration of glutamate relative to one that produces excitotoxicity. PMCA isoform 2 also internalized following exposure to glutamate, although the Na+/K+ ATPase did not. These data suggest that glutamate exposure initiated protease-mediated internalization of PMCAs with a corresponding loss of function that may contribute to the Ca2+ dysregulation that accompanies excitotoxicity.

    Topics: Adenosine Triphosphatases; Amino Acid Chloromethyl Ketones; Animals; Calcium; Calcium-Transporting ATPases; Cation Transport Proteins; Cells, Cultured; Dipeptides; Dose-Response Relationship, Drug; Embryo, Mammalian; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Flow Cytometry; Glutamic Acid; Green Fluorescent Proteins; Hippocampus; Immunohistochemistry; Microscopy, Confocal; N-Methylaspartate; Neural Inhibition; Neurons; Peptide Hydrolases; Plasma Membrane Calcium-Transporting ATPases; Rats; Time Factors; Transfection

2006
Calcium ionophore induced proteolysis and cataract: inhibition by cell permeable calpain antagonists.
    Biochemical and biophysical research communications, 1996, Jan-26, Volume: 218, Issue:3

    Two dipeptide aldehyde cell permeable calpain inhibitors, cBz-Val-Phe and calpeptin, have been assessed for their ability to prevent cytoskeletal proteolysis and loss of transparency in whole rat lenses. Calcium overload, induced by ionomycin in artificial aqueous humor with 1mM calcium, resulted in lens opacification and degradation of cytoskeletal proteins including spectrin, filensin, and vimentin. No such changes resulted from incubation in ionomycin in the absence of calcium. In calcium overload lenses both inhibitors gave some protection against cytoskeletal protein degradation and loss of transparency. These experiments indicate that calpain has a role in cortical opacification in high calcium lenses and that cell penetrating calpain inhibitors do indeed enter lens cells and reduce both proteolysis and opacification.

    Topics: Animals; Calcium; Calpain; Cataract; Cattle; Cell-Free System; Cysteine Proteinase Inhibitors; Cytoskeletal Proteins; Dipeptides; Eye Proteins; Intermediate Filament Proteins; Ionophores; Lens, Crystalline; Light; Rats; Rats, Wistar; Scattering, Radiation; Spectrin; Vimentin

1996
Antigen specificity and cross-species reactivity of a monoclonal antibody (mAb 72.11) against porcine pancreatic procolipase.
    Biochimie, 1991, Volume: 73, Issue:11

    We have studied the antigen specificity and cross-reactivity of a monoclonal antibody (mAb 72.11) of subclass IgG1, raised against the precursor form of porcine colipase (procolipase), whose epitope lies near the amino terminal region of the polypeptide. mAb 72.11 cross-reacts with native porcine, equine and human procolipase, as shown by immuno-inactivation and ELISA titration studies carried out on pure proteins, pancreatic tissue homogenate or pancreatic juice. The epitope site recognized by mAb 72.11 was further characterized by studying antibody binding to denatured procolipase. Reduced carboxymethylated procolipase reacted with mAb 72.11 in ELISA. Heat inactivated or reduced carboxymethylated porcine procolipase displaced antigen from the complex formed between antibody and native procolipase. The lack of sensitivity of epitope recognized by mAb 72.11 on procolipase to heat denaturation or reduction of the disulfide bridges is indicative that antigen specificity of mAb 72.11 is not dependent on the conformation of the antigenic site. Cross-reactivity of mAb 72.11 with procolipase from the three species demonstrates that substitution of amino acid at positions 1 and 3 causes no loss of antigenicity. Finally, mAb 72.11 was coupled to sepharose to isolate human procolipase from human pancreatic juice and to separate the precursor form from activated colipase non-adsorbed on the column.

    Topics: Amino Acid Sequence; Animals; Antibodies, Monoclonal; Antigen-Antibody Complex; Chromatography, Affinity; Colipases; Cross Reactions; Dipeptides; Enzyme Activation; Enzyme Precursors; Enzyme-Linked Immunosorbent Assay; Epitopes; Horses; Humans; Immunoglobulin G; Molecular Sequence Data; Pancreas; Protein Precursors; Protein Sorting Signals; Swine

1991