calpain-inhibitor-iii and benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone

calpain-inhibitor-iii has been researched along with benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone* in 3 studies

Other Studies

3 other study(ies) available for calpain-inhibitor-iii and benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone

ArticleYear
Effects of a caspase and a calpain inhibitor on resting energy expenditures in normal and hypermetabolic rats: a pilot study.
    Physiological research, 2016, 07-18, Volume: 65, Issue:3

    Several diseases induce hypermetabolism, which is characterized by increases in resting energy expenditures (REE) and whole body protein loss. Exaggerated protein degradation is thought to be the driving force underlying this response. The effects of caspase and calpain inhibitors on REE in physiological and hypermetabolic conditions, however, are unknown. Thus, we studied whether MDL28170 (calpain inhibitor) or z-VAD-fmk (caspase inhibitor) affect REE under physiological conditions and during hypermetabolism post-burn. Rats were treated five times weekly and observed for 6 weeks. Treatment was started 2 h (early) or 48 h (late) after burn. In normal rats, MDL28170 transiently increased REE to 130 % of normal during week 2-4. z-VAD-fmk reduced REE by 20-25 % throughout the observation period. Within 14 days after burns, REE increased to 130+/-5 %. Whereas MDL28170/early treatment did not affect REE, MDL28170/late transiently increased REE to 180+/-10 % of normal by week 4 post-burn. In contrast, with z-VAD-fmk/early REE remained between 90-110 % of normal post-burn. z-VAD-fmk/late did not affect burn-induced increases in REE. These data suggest that caspase cascades contribute to the development of hypermetabolism and that burn-induced hypermetabolism can be pharmacologically modulated. Our data point towards caspase cascades as possible therapeutic targets to attenuate hypermetabolism after burns, and possibly in other catabolic disease processes.

    Topics: Amino Acid Chloromethyl Ketones; Animals; Burns; Caspase Inhibitors; Cysteine Proteinase Inhibitors; Dipeptides; Drug Evaluation, Preclinical; Energy Metabolism; Male; Metabolic Diseases; Pilot Projects; Rats, Sprague-Dawley

2016
Endoplasmic reticulum Ca2+ depletion induces endothelial cell apoptosis independently of caspase-12.
    Cardiovascular research, 2006, Mar-01, Volume: 69, Issue:4

    Apoptosis of endothelial cells is considered an initial step in the development of atherosclerosis. Recent studies have indicated that depletion of the endoplasmic reticulum (ER) Ca(2+) content plays an important role in apoptosis. Caspase-12 is a key signal in ER stress-induced apoptosis. However, it is not known whether the depletion of ER Ca(2+) is linked to caspase-12 signalling in endothelial cells. Here we have investigated the interaction of Ca(2+) signalling and caspase-12 cleavage in apoptosis of endothelial cells.. Cytosolic Ca(2+) concentration ([Ca(2+)](i)) of primary porcine aortic endothelial cells was measured using fura-2/AM. Apoptosis was assessed by DNA fragmentation, and cleavage of caspase-12 using Western blotting techniques.. Thapsigargin (5 microM), an inhibitor of the ER Ca(2+)-ATPase, depleted ER Ca (2+) content, increased [Ca(2+)](i), cleaved caspase-12, and induced apoptosis. Bradykinin (10 nM) also increased [Ca(2+)](i) but did not cleave caspase-12 or induce apoptosis. However, when intracellular Ca(2+) was chelated with BAPTA/AM (100 microM), bradykinin caused ER Ca(2+) depletion and apoptosis without accompanying caspase-12 cleavage. A non-selective caspase inhibitor, z-VAD.fmk (100 microM), inhibited apoptosis and cleavage of caspase-12 stimulated by thapsigargin, while a calpain inhibitor, MDL 28170 (120 microM), inhibited caspase-12 cleavage but not apoptosis.. Thus, increases in intracellular Ca(2+) concentration are not sufficient for the induction of apoptosis in endothelial cells, and ER Ca(2+) depletion appears to induce apoptosis independently of caspase-12.

    Topics: Amino Acid Chloromethyl Ketones; Animals; Aorta; Apoptosis; Blotting, Western; Bradykinin; Calcium; Calcium-Transporting ATPases; Calpain; Caspase 12; Caspase Inhibitors; Caspases; Cells, Cultured; Chelating Agents; Cytosol; Dipeptides; DNA Fragmentation; Egtazic Acid; Endoplasmic Reticulum; Endothelial Cells; Endothelium, Vascular; Enzyme Inhibitors; Signal Transduction; Swine; Thapsigargin

2006
Glutamate-induced protease-mediated loss of plasma membrane Ca2+ pump activity in rat hippocampal neurons.
    Journal of neurochemistry, 2006, Volume: 98, Issue:5

    Ca2+ dysregulation is a hallmark of excitotoxicity, a process that underlies multiple neurodegenerative disorders. The plasma membrane Ca2+ ATPase (PMCA) plays a major role in clearing Ca2+ from the neuronal cytoplasm. Here, we show that the rate of PMCA-mediated Ca2+ efflux from rat hippocampal neurons decreased following treatment with an excitotoxic concentration of glutamate. PMCA-mediated Ca2+ extrusion following a brief train of action potentials exhibited an exponential decay with a mean time constant (tau) of 8.8 +/- 0.2 s. Four hours following the start of a 30 min treatment with 200 microm glutamate, a second population of cells emerged with slowed recovery kinetics (tau = 16.5 +/- 0.3 s). Confocal imaging of cells expressing an enhanced green fluorescent protein (EGFP)-PMCA4b fusion protein revealed that glutamate treatment internalized EGFP and that cells with reduced plasma membrane fluorescence had impaired Ca2+ clearance. Treatment with inhibitors of the Ca2+-activated protease calpain protected PMCA function and prevented EGFP-PMCA internalization. PMCA internalization was triggered by activation of NMDA receptors and was less pronounced for a non-toxic concentration of glutamate relative to one that produces excitotoxicity. PMCA isoform 2 also internalized following exposure to glutamate, although the Na+/K+ ATPase did not. These data suggest that glutamate exposure initiated protease-mediated internalization of PMCAs with a corresponding loss of function that may contribute to the Ca2+ dysregulation that accompanies excitotoxicity.

    Topics: Adenosine Triphosphatases; Amino Acid Chloromethyl Ketones; Animals; Calcium; Calcium-Transporting ATPases; Cation Transport Proteins; Cells, Cultured; Dipeptides; Dose-Response Relationship, Drug; Embryo, Mammalian; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Flow Cytometry; Glutamic Acid; Green Fluorescent Proteins; Hippocampus; Immunohistochemistry; Microscopy, Confocal; N-Methylaspartate; Neural Inhibition; Neurons; Peptide Hydrolases; Plasma Membrane Calcium-Transporting ATPases; Rats; Time Factors; Transfection

2006