calpain has been researched along with selfotel* in 2 studies
2 other study(ies) available for calpain and selfotel
Article | Year |
---|---|
Neuroprotection associated with alternative splicing of NMDA receptors in rat cortical neurons.
Exposure of cultured cortical neurons to elevated extracellular K(+) concentrations (25 mM) induces membrane depolarization and an increase in action-potential firing. Long-term high K(+) treatment was associated with an increased neuronal cell death. In surviving neurons, multiple changes occurred in the proportion of individual NMDA receptor subunit 1 (NR1) splice variant mRNA expression, whereas the overall expression of NR1, NR2A and NR2B transcripts remained unaffected. The high K(+)-induced changes in NR1 splice variant expression were virtually abolished upon a concurrent administration of tetrodotoxin (TTX; 3 microM). In voltage-clamp recordings performed on neurons resistant to high K(+) treatment, inward currents induced by NMDA (1-1,000 microM) were reduced. In K(+)-resistant cells, the activity of calpain but not of caspase-3 was diminished compared with controls kept in regular medium. NR function as well as calpain activity was not affected in cultures concomitantly treated with high K(+) and either TTX or a NR antagonist (CGS19755 (selfotel) or memantine). In conclusion, the present data indicate adaptive changes in NR1 splice variant expression and a decrease in NR function upon a sustained increase in neurotransmission. Accordingly, alternative splicing could be an endogenous mechanism to counteract cellular damage due to overactivation of excitatory NRs and may be associated with an impairment of necrotic mechanisms. Topics: Action Potentials; Alternative Splicing; Animals; Calpain; Cell Survival; Cells, Cultured; Cerebral Cortex; Gene Expression Regulation; Neurons; Neuroprotective Agents; Pipecolic Acids; Potassium; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; RNA, Messenger; Spectrin; Tetrodotoxin; Time Factors | 2006 |
Glutamate receptor antagonists inhibit calpain-mediated cytoskeletal proteolysis in focal cerebral ischemia.
Excitatory amino acids may promote microtubular proteolysis observed in ischemic neuronal degeneration by calcium-mediated activation of calpain, a neutral protease. We tested this hypothesis in an animal model of focal cerebral ischemia without reperfusion. Spontaneously hypertensive rats were treated with 2, 3-dihydroxy-6-nitro-7-sulfamoyl-benzo-(F)quinoxaline (NBQX), a competitive antagonist of the neuronal receptor for alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), or cis-4-[phosphono-methyl]-2-piperidine carboxylic acid (CGS 19755), a competitive antagonist of the N-methyl-d-aspartate (NMDA) receptor. After treatment, all animals were subjected to permanent occlusion of the middle cerebral artery for 6 or 24 h. Infarct volumes measured in animals pretreated with CGS 19755 after 24 h of ischemia were significantly smaller than those quantified in ischemic controls. Rats pretreated with NBQX showed partial amelioration of cytoskeletal injury with preserved immunolabeling of microtubule-associated protein 2 (MAP 2) at 6 and 24 h and reduced accumulation of calpain-cleaved spectrin byproducts only at 6 h. Prevention of cytoskeletal damage was more effective after pretreatment with CGS 19755, as shown by retention of MAP 2 immunolabeling and significant restriction of calpain activity at both 6 and 24 h. Preserved immunolabeling of tau protein was observed at 6 and 24 h only in animals pretreated with CGS 19755. Western analysis performed on ischemic cortex taken from controls or rats pretreated with either NBQX or CGS 19755 suggested that loss of tau protein immunoreactivity was caused by dephosphorylation, rather than proteolysis. These results demonstrate a crucial link between excitotoxic neurotransmission, microtubular proteolysis, and neuronal degeneration in focal cerebral ischemia. Topics: Animals; Blotting, Western; Calpain; Cerebral Infarction; Cytoskeleton; Excitatory Amino Acid Antagonists; Immunohistochemistry; Ischemic Attack, Transient; Male; Microtubule-Associated Proteins; Pipecolic Acids; Quinoxalines; Rats; Rats, Inbred SHR; Receptors, Glutamate; Spectrin; Synaptic Transmission; tau Proteins | 1998 |