calpain has been researched along with chelerythrine* in 4 studies
4 other study(ies) available for calpain and chelerythrine
Article | Year |
---|---|
A PKM generated by calpain cleavage of a classical PKC is required for activity-dependent intermediate-term facilitation in the presynaptic sensory neuron of Aplysia.
Atypical PKM, a persistently active form of atypical PKC, is proposed to be a molecular memory trace, but there have been few examinations of the role of PKMs generated from other PKCs. We demonstrate that inhibitors used to inhibit PKMs generated from atypical PKCs are also effective inhibitors of other PKMs. In contrast, we demonstrate that dominant-negative PKMs show isoform-specificity. A dominant-negative PKM from the classical PKC Apl I blocks activity-dependent intermediate-term facilitation (a-ITF) when expressed in the sensory neuron, while a dominant-negative PKM from the atypical PKC Apl III does not. Consistent with a specific role for PKM Apl I in activity-dependent facilitation, live imaging FRET-based cleavage assays reveal that activity leads to cleavage of the classical PKC Apl I, but not the atypical PKC Apl III in the sensory neuron varicosities of Aplysia In contrast, massed intermediate facilitation (m-ITF) induced by 10 min of 5HT is sufficient for cleavage of the atypical PKC Apl III in the motor neuron. Interestingly, both cleavage of PKC Apl I in the sensory neuron during a-ITF and cleavage of PKC Apl III in the motor neuron during m-ITF are inhibited by a dominant-negative form of a penta-EF hand containing classical calpain cloned from Aplysia Consistent with a role for PKMs in plasticity, this dominant-negative calpain also blocks both a-ITF when expressed in the sensory neuron and m-ITF when expressed in the motor neuron. This study broadens the role of PKMs in synaptic plasticity in two significant ways: (i) PKMs generated from multiple isoforms of PKC, including classical isoforms, maintain memory traces; (ii) PKMs play roles in the presynaptic neuron. Topics: Animals; Aplysia; Benzophenanthridines; Calpain; Cells, Cultured; Enzyme Inhibitors; Fluorescence Resonance Energy Transfer; Gene Expression Regulation; Membrane Potentials; Microinjections; Motor Neurons; Nervous System; Neuronal Plasticity; Potassium Chloride; Presynaptic Terminals; Protein Isoforms; Protein Kinase C; Sensory Receptor Cells; Serotonin; Transduction, Genetic | 2017 |
Bradykinin regulates calpain and proinflammatory signaling through TRPM7-sensitive pathways in vascular smooth muscle cells.
Transient receptor potential melastatin-7 (TRPM7) channels have recently been identified to be regulated by vasoactive agents acting through G protein-coupled receptors in vascular smooth muscle cells (VSMC). However, downstream targets and functional responses remain unclear. We investigated the subcellular localization of TRPM7 in VSMCs and questioned the role of TRPM7 in proinflammatory signaling by bradykinin. VSMCs from Wistar-Kyoto rats were studied. Cell fractionation by sucrose gradient and differential centrifugation demonstrated that in bradykinin-stimulated cells, TRPM7 localized in fractions corresponding to caveolae. Immunofluorescence confocal microscopy revealed that TRPM7 distributes along the cell membrane, that it has a reticular-type intracellular distribution, and that it colocalizes with flotillin-2, a marker of lipid rafts. Bradykinin increased expression of calpain, a TRPM7 target, and stimulated its cytosol/membrane translocation, an effect blocked by 2-APB (TRPM7 inhibitor) and U-73122 (phospholipase C inhibitor), but not by chelerythrine (PKC inhibitor). Expression of proinflammatory mediators VCAM-1 and cyclooxygenase-2 (COX-2) was time-dependently increased by bradykinin. This effect was blocked by Hoe-140 (B2 receptor blocker) and 2-APB. Our data demonstrate that in bradykinin-stimulated VSMCs: 1) TRPM7 is upregulated, 2) TRPM7 associates with cholesterol-rich microdomains, and 3) calpain and proinflammatory mediators VCAM-1 and COX2 are regulated, in part, via TRPM7- and phospholipase C-dependent pathways through B2 receptors. These findings identify a novel signaling pathway for bradykinin, which involves TRPM7. Such phenomena may play a role in bradykinin/B2 receptor-mediated inflammatory responses in vascular cells. Topics: Animals; Benzophenanthridines; Boron Compounds; Bradykinin; Bradykinin B2 Receptor Antagonists; Calpain; Caveolae; Cells, Cultured; Cyclooxygenase 2; Enzyme Inhibitors; Estrenes; Inflammation Mediators; Magnesium; Mesenteric Arteries; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Protein Kinase C; Protein Transport; Pyrrolidinones; Rats; Rats, Inbred WKY; Receptor, Bradykinin B2; Signal Transduction; TRPM Cation Channels; Type C Phospholipases; Up-Regulation; Vascular Cell Adhesion Molecule-1 | 2009 |
Protein kinase C delta is not activated by caspase-3 and its inhibition is sufficient to induce apoptosis in the colon cancer line, COLO 205.
Activation of protein kinase C delta (PKCdelta) is believed to be pro-apoptotic. PKCdelta is reported to be reduced in colon cancers. Using a colon cancer cell line, COLO 205, we have examined the roles of PKCdelta in apoptosis and of caspase-3 in the activation and inhibition of PKCdelta. PKCdelta activation with bistratene A and its inhibition with rottlerin induced apoptosis. Effects of PKC activators and inhibitors were additive, suggesting that PKCdelta down-regulation was responsible for the effects on apoptosis. Different apoptotic pathways induced PKCdelta cleavage, but the fragment produced was inactive in kinase assays. Caspase-3 inhibition did not block DNA fragmentation or PKCdelta proteolysis despite blocking intracellular caspase-3 activity. Calpain inhibition with calpeptin did not prevent TPA-induced PKCdelta cleavage. We conclude that in colonocytes, inhibition of PKCdelta is sufficient to lead to caspase-3-independent apoptosis. Caspase-3 does not cleave PKCdelta to an active form, nor does caspase-3 inhibition block apoptosis. Topics: Acetamides; Acetophenones; Alkaloids; Amino Acid Chloromethyl Ketones; Antineoplastic Agents; Apoptosis; Benzophenanthridines; Benzopyrans; Calpain; Caspase 3; Caspase Inhibitors; Caspases; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Colonic Neoplasms; Cysteine Proteinase Inhibitors; Dipeptides; DNA Fragmentation; Enzyme Activation; Enzyme Inhibitors; Flow Cytometry; Histones; Humans; Indomethacin; Kinetics; Phenanthridines; Phosphorylation; Protein Kinase C; Protein Kinase C-delta; Pyrans; Spiro Compounds; Tetradecanoylphorbol Acetate; Tumor Necrosis Factor-alpha | 2005 |
Bidirectional regulation of protein kinase M zeta in the maintenance of long-term potentiation and long-term depression.
Long-term potentiation (LTP) and long-term depression (LTD) are persistent modifications of synaptic efficacy that may contribute to information storage in the CA1 region of the hippocampus. Persistently enhanced phosphorylation has been implicated in the maintenance phase of LTP. This hypothesis is supported by our previous observation that protein kinase M zeta (PKM zeta), the constitutively active catalytic fragment of a single protein kinase C isoform (PKC zeta), increases in LTP maintenance. In contrast, dephosphorylation may be important in LTD maintenance, because phosphatase inhibitors reverse established LTD, in addition to blocking its induction. Because phosphorylation is determined by a balance of phosphatases and kinases, both increases in phosphatase activity and decreases in kinase activity could contribute to LTD. We now report that the reduction of protein kinase activity by H7, as well as selective inhibition of PKC by chelerythrine, mimics and occludes the maintenance phase of homosynaptic LTD in rat hippocampal slices. Conversely, saturated LTD occludes the synaptic depression caused by chelerythrine. Biochemical analysis demonstrates a decrease of PKM zeta, as well as PKCs gamma and epsilon, in LTD maintenance and a concomitant loss of constitutive PKC activity. LTD and the downregulation of PKM zeta are prevented by NMDA receptor antagonists and Ca(2+)-dependent protease inhibitors. Both LTD and the downregulation of PKM zeta are reversible by high-frequency afferent stimulation. Our findings indicate that the molecular mechanisms of LTP and LTD maintenance are inversely related through the bidirectional regulation of PKC. Topics: Alkaloids; Animals; Benzophenanthridines; Calpain; Long-Term Potentiation; Peptide Hydrolases; Phenanthridines; Protein Kinase C; Protein Kinases; Rats; Rats, Sprague-Dawley; Synapses | 1996 |