calpain has been researched along with acetyl-aspartyl-glutamyl-valyl-aspartal* in 3 studies
3 other study(ies) available for calpain and acetyl-aspartyl-glutamyl-valyl-aspartal
Article | Year |
---|---|
Sepsis stimulates calpain activity in skeletal muscle by decreasing calpastatin activity but does not activate caspase-3.
We examined the influence of sepsis on the expression and activity of the calpain and caspase systems in skeletal muscle. Sepsis was induced in rats by cecal ligation and puncture (CLP). Control rats were sham operated. Calpain activity was determined by measuring the calcium-dependent hydrolysis of casein and by casein zymography. The activity of the endogenous calpain inhibitor calpastatin was measured by determining the inhibitory effect on calpain activity in muscle extracts. Protein levels of mu- and m-calpain and calpastatin were determined by Western blotting, and calpastatin mRNA was measured by real-time PCR. Caspase-3 activity was determined by measuring the hydrolysis of the fluorogenic caspase-3 substrate Ac-DEVD-AMC and by determining protein and mRNA expression for caspase-3 by Western blotting and real-time PCR, respectively. In addition, the role of calpains and caspase-3 in sepsis-induced muscle protein breakdown was determined by measuring protein breakdown rates in the presence of specific inhibitors. Sepsis resulted in increased muscle calpain activity caused by reduced calpastatin activity. In contrast, caspase-3 activity, mRNA levels, and activated caspase-3 29-kDa fragment were not altered in muscle from septic rats. Sepsis-induced muscle proteolysis was blocked by the calpain inhibitor calpeptin but was not influenced by the caspase-3 inhibitor Ac-DEVD-CHO. The results suggest that sepsis-induced muscle wasting is associated with increased calpain activity, secondary to reduced calpastatin activity, and that caspase-3 activity is not involved in the catabolic response to sepsis. Topics: Animals; Bacterial Infections; Calcium-Binding Proteins; Calpain; Caspase 3; Caspases; Cells, Cultured; Cysteine Proteinase Inhibitors; Dipeptides; Enzyme Activation; Male; Muscle Fibers, Skeletal; Muscle Proteins; Muscle, Skeletal; Oligopeptides; Rats; Rats, Sprague-Dawley; RNA, Messenger | 2005 |
Caspases cleave the amino-terminal calpain inhibitory unit of calpastatin during apoptosis in human Jurkat T cells.
We have previously reported the activation of procalpain mu (precursor for low-calcium-requiring calpain) in apoptotic cells using a cleavage-site-directed antibody specific to active calpain [Kikuchi, H. and Imajoh-Ohmi, S. (1995) Cell Death Differ. 2, 195-199]. In this study, calpastatin, the endogenous inhibitor protein for calpain, was cleaved to a 90-kDa polypeptide during apoptosis in human Jurkat T cells. The limited proteolysis of calpastatin preceded the autolytic activation of procalpain. Inhibitors for caspases rescued the cells from apoptosis and simultaneously inhibited the cleavage of calpastatin. The full-length recombinant calpastatin was also cleaved by caspase-3 or caspase-7 at Asp-233 into the same size fragment. Cys-241 was also targeted by these caspases in vitro but not in apoptotic cells. Caspase-digested calpastatin lost its amino-terminal inhibitory unit, and inhibited three moles of calpain per mole. Our findings suggest that caspases trigger the decontrol of calpain activity suppression by degrading calpastatin. Topics: Amino Acid Chloromethyl Ketones; Antibodies, Monoclonal; Apoptosis; Aspartic Acid; Calcium-Binding Proteins; Calpain; Caspase Inhibitors; Caspases; Cysteine Proteinase Inhibitors; fas Receptor; Humans; Jurkat Cells; Leupeptins; Oligopeptides; Poly(ADP-ribose) Polymerases; Recombinant Proteins; Tumor Necrosis Factor-alpha | 2000 |
Caspase-dependent activation of calpain during drug-induced apoptosis.
We have previously demonstrated that calpain is responsible for the cleavage of Bax, a proapoptotic protein, during drug-induced apoptosis of HL-60 cells (Wood, D. E., Thomas, A., Devi, L. A., Berman, Y., Beavis, R. C., Reed, J. C., and Newcomb, E. W. (1998) Oncogene 17, 1069-1078). Here we show the sequential activation of caspases and calpain during drug-induced apoptosis of HL-60 cells. Time course experiments using the topoisomerase I inhibitor 9-amino-20(S)-camptothecin revealed that cleavage of caspase-3 substrates poly(ADP-ribose) polymerase (PARP) and the retinoblastoma protein as well as DNA fragmentation occurred several hours before calpain activation and Bax cleavage. Pretreatment with the calpain inhibitor calpeptin blocked calpain activation and Bax cleavage but did not inhibit PARP cleavage, DNA fragmentation, or 9-amino-20(S)-camptothecin-induced morphological changes and cell death. Pretreatment with the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (Z-VAD-fmk) inhibited PARP cleavage, DNA fragmentation, calpain activation, and Bax cleavage and increased cell survival by 40%. Interestingly, Z-VAD-fmk-treated cells died in a caspase- and calpain-independent manner that appeared morphologically distinct from apoptosis. Our results suggest that excessive or uncontrolled calpain activity may play a role downstream of and distinct from caspases in the degradation phase of apoptosis. Topics: Amino Acid Chloromethyl Ketones; Apoptosis; Calpain; Caspase 3; Caspases; Coumarins; Cysteine Proteinase Inhibitors; Dipeptides; DNA Fragmentation; Enzyme Activation; HL-60 Cells; Humans; Oligopeptides | 1999 |