calpain and 2-chloropropionic-acid

calpain has been researched along with 2-chloropropionic-acid* in 2 studies

Reviews

1 review(s) available for calpain and 2-chloropropionic-acid

ArticleYear
L-2-chloropropionic acid-induced neurotoxicity in the rat: a valuable model for studying selective neuronal cell death in vivo.
    General pharmacology, 1997, Volume: 29, Issue:2

    1. L-2-Chloropropionic acid (L-CPA) is neurotoxic when administered orally as a neutral sodium salt in high doses to rats, resulting in a selective destruction of cerebellar granule cells with the result that animals develop marked difficulties in maintaining normal locomotion. 2. Cerebellar granule cell destruction is accompanied by a reduction in cerebellar glutamate and aspartate concentrations, reductions in the density of glutamate receptors located in the cerebellar granule cell layer and development of cerebellar oedema. No other cell type in the brain, nor other organ, is affected by L-CPA. 3. The neuronal cell death is necrotic in type, involving the activation of N-methyl-D-aspartate (NMDA) type glutamate receptors and there is some evidence for a partial role of nitric oxide in the development of the neurotoxicity. 4. Contrary to work performed on NMDA mediated cell death using neuronal cell culture approaches, L-CPA-induced granule cell death does not appear to arise from the production of excess quantities of cytotoxic free radicals, but may involve selective calcium-activated proteases, such as the calpains. 5. Tentative evidence suggests that L-CPA may interfere with voltage-dependent calcium channels in the cerebellum leading to activation of the cell death and resulting in the destruction of the granule cells. 6. In conclusion, L-CPA-induced neurotoxicity may provide valuable information on the neurochemical pathways involved in neuronal cell death that is associated with many neurological diseases.

    Topics: Administration, Oral; Animals; Calcium Channels; Calpain; Carbon Radioisotopes; Cell Death; Cerebellum; Free Radicals; Hydrocarbons, Chlorinated; Models, Biological; Neurons; Nitric Oxide Synthase; Propionates; Rats

1997

Other Studies

1 other study(ies) available for calpain and 2-chloropropionic-acid

ArticleYear
Calpain activation and not oxidative damage mediates L-2-chloropropionic acid-induced cerebellar granule cell necrosis.
    Toxicology and applied pharmacology, 1997, Volume: 142, Issue:2

    Possible biochemical events involved in L-2-chloropropionic acid (L-CPA)-induced delayed cerebellar granule cell necrosis following N-methyl-D-aspartate activation were studied in vivo. We examined whether the calcium-sensitive proteolytic enzymes, the calpains, may be activated by L-CPA or whether the generation of excess quantities of cytotoxic free radicals may play a role in the neurotoxicity produced by oral administration of L-CPA (750 mg/kg, pH 7.0). Evidence for free radical-induced cellular damage was examined using biochemical approaches such as examining brains from L-CPA-treated rats for increased lipid peroxidation, DNA damage, or protein oxidation. Second, the ability of antioxidants to provide neuroprotective activity against L-CPA-induced neurotoxicity was examined in vivo. Western blotting using antibodies against spectrin (alpha-fodrin) demonstrated evidence for calpain (EC 3.4.22.17) activation in the cerebellum, but not in the cerebral cortex of L-CPA-treated rats at 36 and 48 hr after L-CPA dosing. In contrast, there was no evidence for oxidative damage to cerebellar proteins or lipids in L-CPA-treated rat brains compared to controls. We also could not find evidence for DNA damage using the TUNEL method for the detection of single- and/ or double-strand breakage in situ in L-CPA-treated brains. We examined whether a number of reported antioxidants may be effective against L-CPA-induced neurotoxicity. The aminosteroids U74389G and U83836E, the free radical scavengers 3-methyl-1-phenylpyrazolin-5-one and N-tert-butylphenylnitrone, and the iron chelator N-ethoxy-2-ethyl-3-hydroxypyridin-4-one were all ineffective in attenuating L-CPA neurotoxicity. We suggest that L-CPA-induced cerebellar necrosis is the result of calpain activation which results in the degradation of cytoskeletal proteins and other proteins necessary for cellular biochemistry. We could find no evidence of oxidative damage to cerebellar proteins, lipids, or DNA as a result of excess amounts of free radicals, and selective antioxidants were unable to provide neuroprotection against L-CPA neurotoxicity, suggesting that oxidative stress does not play a role in the granule cell necrosis.

    Topics: Administration, Oral; Animals; Antioxidants; Ascorbic Acid; Aspartic Acid; Blotting, Western; Calpain; Cerebellum; Free Radicals; Glutamic Acid; Hydrocarbons, Chlorinated; Lipid Peroxidation; Male; Necrosis; Nervous System Diseases; Neurons; Oxidative Stress; Propionates; Rats; Spectrin

1997