calmidazolium has been researched along with gamma-aminobutyric acid in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (40.00) | 18.2507 |
2000's | 3 (60.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Fukunaga, K; Kano, M; Konnerth, A | 1 |
Akopian, A; Gabriel, R; Witkovsky, P | 1 |
Chovanec, P; Hudecová, D; Liptaj, T; Simkovic, M; Strigácová, J; Turský, T; Varecka, L | 1 |
Cao, LH; Yang, XL; Yu, YC | 1 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
5 other study(ies) available for calmidazolium and gamma-aminobutyric acid
Article | Year |
---|---|
Ca(2+)-induced rebound potentiation of gamma-aminobutyric acid-mediated currents requires activation of Ca2+/calmodulin-dependent kinase II.
Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Animals; Calcium; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Calcium-Calmodulin-Dependent Protein Kinases; Cerebellum; Drug Synergism; Enzyme Activation; Enzyme Inhibitors; gamma-Aminobutyric Acid; Imidazoles; In Vitro Techniques; Kinetics; Marine Toxins; Membrane Potentials; Nerve Fibers; Oxazoles; Purkinje Cells; Rats; Receptors, GABA-A; Signal Transduction; Staurosporine | 1996 |
Calcium released from intracellular stores inhibits GABAA-mediated currents in ganglion cells of the turtle retina.
Topics: Alkaline Phosphatase; Animals; Bicuculline; Caffeine; Calcineurin; Calcium; Calcium Channels; Chelating Agents; Egtazic Acid; Enzyme Inhibitors; GABA Antagonists; gamma-Aminobutyric Acid; Imidazoles; Inositol 1,4,5-Trisphosphate; Inositol 1,4,5-Trisphosphate Receptors; Membrane Potentials; Phosphodiesterase Inhibitors; Phosphoric Monoester Hydrolases; Pyridazines; Receptors, Cytoplasmic and Nuclear; Receptors, GABA-A; Retinal Ganglion Cells; Ryanodine; Ryanodine Receptor Calcium Release Channel; Thapsigargin; Turtles | 1998 |
Glutamate decarboxylase activity in Trichoderma viride conidia and developing mycelia.
Topics: Cyclosporine; Edetic Acid; Enzyme Inhibitors; Freezing; gamma-Aminobutyric Acid; Glutamate Decarboxylase; Hydrogen-Ion Concentration; Imidazoles; Light; Organelles; Phenothiazines; Spores, Fungal; Temperature; Trichoderma | 2001 |
Modulation by brain natriuretic peptide of GABA receptors on rat retinal ON-type bipolar cells.
Topics: Animals; Atrial Natriuretic Factor; Caffeine; Calcium; Calcium Channels; Calcium Signaling; Calcium-Transporting ATPases; Calmodulin; Carbazoles; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; GABA-A Receptor Antagonists; gamma-Aminobutyric Acid; Guanylate Cyclase; Heparin; Imidazoles; Indoles; Inositol 1,4,5-Trisphosphate Receptors; Macrocyclic Compounds; Male; Membrane Potentials; Natriuretic Peptide, Brain; Oxazoles; Patch-Clamp Techniques; Peptide Fragments; Peptides, Cyclic; Polysaccharides; Protein Kinase Inhibitors; Rats; Rats, Sprague-Dawley; Receptors, Atrial Natriuretic Factor; Receptors, Cytoplasmic and Nuclear; Receptors, GABA; Receptors, GABA-A; Retinal Bipolar Cells; Ruthenium Red; Ryanodine; Ryanodine Receptor Calcium Release Channel; Thapsigargin | 2006 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |