calixarenes and cesium-bromide

calixarenes has been researched along with cesium-bromide* in 2 studies

Other Studies

2 other study(ies) available for calixarenes and cesium-bromide

ArticleYear
Computational investigation of a new ion-pair receptor for calix[4]pyrrole.
    Journal of molecular modeling, 2012, Volume: 18, Issue:6

    Theoretical studies of a new ion-pair receptor, meso-octamethylcalix[4]pyrrole (OMCP), and its interactions with the halide anions F(-), Cl(-), and Br(-) and the cesium halides CsF, CsCl, and CsBr have been performed. Geometries, binding energies, and binding enthalpies were evaluated with the restricted hybrid Becke three-parameter exchange functional (B3LYP) method using the 6-31+G(d) basis set and relativistic effective core potentials. The optimized geometric structures were used to perform natural bond orbital (NBO) analysis. The two typical types of hydrogen bonds, N-H…X(-) and C-H…X(-), were investigated. The results indicate that hydrogen bonding interactions are dominant, and that the halide anions (F(-), Cl(-), and Br(-)) offer lone pair electrons to the σ*(N-H) or σ*(C-H) antibonding orbitals of OMCP. In addition, electrostatic interactions between the lone pair electrons of the halide anion and the LP* orbitals of Cs(+) as well as cation-π interactions between the metal ion and π-orbitals of the pyrrole rings have important roles to play in the Cs(+)•OMCP•X(-) complexes. The current study further demonstrates that this easy-to-make OMCP host compound functions as not only an anion receptor but also an ion-pair receptor.

    Topics: Algorithms; Bromides; Calixarenes; Cesium; Chlorides; Computer Simulation; Coordination Complexes; Fluorides; Hydrogen Bonding; Models, Molecular; Molecular Conformation; Porphyrins; Quantum Theory; Thermodynamics

2012
Calix[4]pyrrole: a new ion-pair receptor as demonstrated by liquid-liquid extraction.
    Journal of the American Chemical Society, 2008, Mar-26, Volume: 130, Issue:12

    Solvent-extraction studies provide confirming evidence that meso-octamethylcalix[4]pyrrole acts as an ion-pair receptor for cesium chloride and cesium bromide in nitrobenzene solution. The stoichiometry of the interaction under extraction conditions from water to nitrobenzene was determined from plots of the cesium distribution ratios vs cesium salt and receptor concentration, indicating the formation of an ion-paired 1:1:1 cesium:calix[4]pyrrole:halide complex. The extraction results were modeled to evaluate the equilibria inherent to the solvent-extraction system, with either chloride or bromide. The binding energy between the halide anion and the calix[4]pyrrole was found to be about 7 kJ/mol larger for cesium chloride than for the cesium bromide. The ion-pairing free energies between the calix[4]pyrrole-halide complex and the cesium cation are nearly the same within experimental uncertainty for either halide, consistent with a structural model in which the Cs+ cation resides in the calix bowl. These results are unexpected since nitrobenzene is a polar solvent that generally leads to dissociated complexes in the organic phase when used as a diluent in extraction studies of univalent ions. Control studies involving nitrate revealed no evidence of ion pairing for CsNO3 under conditions identical to those where it is observed for CsCl and CsBr.

    Topics: Bromides; Calixarenes; Cesium; Chlorides; Ions; Molecular Structure; Nitrobenzenes; Porphyrins; Solutions; Solvents; Water

2008