calcimycin has been researched along with usnic-acid* in 2 studies
2 other study(ies) available for calcimycin and usnic-acid
Article | Year |
---|---|
Usnic acid as calcium ionophore and mast cells stimulator.
Usnic acid (UA), a secondary lichen metabolite, has long been popular as one of natural fat-burning dietary supplements. Similar to 2,4-dinitrophenol, the weight-loss effect of UA is assumed to be associated with its protonophoric uncoupling activity. Recently, we have shown that the ability of UA to shuttle protons across both mitochondrial and artificial membranes is strongly modulated by the presence of calcium ions in the medium. Here, by using fluorescent probes, we studied the calcium-transporting capacity of usnic acid in a variety of membrane systems comprising liposomes, isolated rat liver mitochondria, erythrocytes and rat basophilic leukemia cell culture (RBL-2H3). At concentrations of tens of micromoles, UA appeared to be able to carry calcium ions across membranes in all the systems studied. Similar to the calcium ionophore A23187, UA caused degranulation of RBL-2H3 cells. Therefore, UA, being a protonophoric uncoupler of oxidative phosphorylation, at higher concentrations manifests itself as a calcium ionophore, which could be relevant to its overdose toxicity in humans and also its phytotoxicity. Topics: 2,4-Dinitrophenol; Animals; Benzofurans; Calcimycin; Calcium Ionophores; Cell Line, Tumor; Erythrocytes; Humans; Ion Transport; Lichens; Mitochondria; Oxidative Phosphorylation; Protons; Rats | 2020 |
Mechanism of action of an old antibiotic revisited: Role of calcium ions in protonophoric activity of usnic acid.
Usnic acid (UA), an old antibiotic and one of the first described mitochondrial uncouplers, has demonstrated many beneficial activities, such as antimicrobial, antiviral, antitumour and anti-inflammatory properties. Here, we performed a thorough investigation of effects of usnic acid and its analogues on artificial planar bilayer lipid membrane (BLM), rat liver mitochondria and bacteria. Surprisingly enough, all of the three hydroxyl groups of UA appeared to be involved in its proton-shuttling activity on BLM. We ascribed this fact to an ability of UA to form complexes with calcium ions, aiding it in cycling protons across the membrane. Actually, the addition of calcium ions markedly stimulated the UA-induced electrical current across BLM. By using the calcium ionophore A23187, we proved the involvement of calcium ions in the UA uncoupling action on isolated rat liver mitochondria. The calcium-chelating property of UA was demonstrated here by the method of extracting metal ions into a hydrophobic phase. Modification of any of the hydroxyl groups in UA dramatically reduced not only the UA-induced current across BLM and the UA-mediated calcium extraction, but also the uncoupling activity of UA in mitochondria and the inhibiting effect of UA on the growth of Bacillus subtilis. The ability of UA to cause dissipation of membrane potential in isolated liver mitochondria and bacterial cells was shown here for the first time. In view of the data obtained, the protonophoric activity of UA is considered to make a significant contribution to its antibacterial action. Topics: Animals; Anti-Bacterial Agents; Bacillus subtilis; Benzofurans; Calcimycin; Calcium; Ion Transport; Lipid Bilayers; Membrane Potential, Mitochondrial; Mitochondria, Liver; Rats | 2019 |