calcimycin and pepstatin

calcimycin has been researched along with pepstatin* in 2 studies

Other Studies

2 other study(ies) available for calcimycin and pepstatin

ArticleYear
Biochemical alteration of membrane-associated IL-6 RI (80-kDa) in adherent macrophages and vascular endothelium.
    Molecular immunology, 2001, Volume: 38, Issue:5

    The potential biochemical mechanisms that mediate the 'shedding' of soluble IL-6 RI (80-kDa) receptor fragments in populations of adherent macrophages were explored. Stimulated macrophages displayed proportional increases in both the expression of membrane-associated IL-6 RI (80-kDa) and the release of soluble receptor fragments. The use of protease inhibitors implicated thiol/cysteine and carboxyl/aspartate proteases in this process. Cathepsin-D depleted membrane-associated IL-6 RI (80-kDa) complexes and generated soluble receptor fragments. A carboxyl/aspartate protease from activated macrophages isolated utilizing pepstatin-A affinity chromatography, was also found to affect membrane-associated IL-6 RI (80-kDa) complexes and generate soluble receptor fragments. Most likely, this fraction corresponded to cathepsin-D based upon its origin, pepstatin-A binding avidity, Hb-PAGE zymography, and hydrolysis of an enzyme-specific substrate. We conclude that cathepsin-D can generate soluble fragments of IL-6 RI (80-kDa) expressed by both macrophages and vascular endothelium.

    Topics: Animals; Aspartic Acid Endopeptidases; Buffers; Calcimycin; Cathepsin D; Cattle; Cell Adhesion; Cell Membrane; Citrates; Cysteine Proteinase Inhibitors; Endothelium, Vascular; Female; Leucine; Macrophages; N-Formylmethionine Leucyl-Phenylalanine; Pepstatins; Receptors, Interleukin-6; Sodium Citrate

2001
Effects of exogenous protease effectors on beef tenderness development and myofibrillar degradation and solubility.
    Journal of animal science, 1994, Volume: 72, Issue:5

    The effects of in situ postrigor injection (24 h postmortem) of exogenous aspartic, serine, and cysteine proteinase effectors into cylindrical beef longissimus samples on tenderness and myofibrillar protein degradation and integrity were studied. Injection of phenylmethanesulphonylfluoride (PMSF) and pepstatin did not influence shear force or protein degradation measured 8 d postmortem, confirming that neither serine nor aspartic proteinases affect tenderization. Injection of leupeptin, an epoxysuccinyl peptide (E-64), or N-acetyl-Leu-Leu-norleucinal (calpain inhibitor I) blocked tenderization completely, as observed by higher (P < .05) shear force values. A causal relationship between increased toughness and prevented action of the cysteine proteinases was suggested by a concomitant reduction of myofibrillar protein degradation, generally reflected in higher (P < .05) remaining troponin-T and titin amounts and lower (P < .05) levels of 30-kDa peptide, as evaluated by semiquantitative SDS-PAGE. Moreover, parallel to these changes, amounts of salt-soluble myofibrillar protein and semiquantitative concentrations of individual salt-soluble proteins (SDS-PAGE) were also reduced (P < .05). Injection of Triton-X-100 and Ca2+ increased (P < .05) tenderness, as well as myofibrillar protein degradation and solubility, and free Ca2+, whereas EDTA induced the opposite results, indicating an important role for calpains in tenderization. Because cathepsin B, D, H, and L inhibitors did not affect texture or proteolysis, our results suggest that calpains are the main proteases involved in beef tenderization.

    Topics: Animals; Calcimycin; Calcium; Calpain; Cathepsins; Cattle; Cysteine Proteinase Inhibitors; Diazomethane; Edetic Acid; Electrophoresis, Polyacrylamide Gel; Endopeptidases; Glycoproteins; Leucine; Leupeptins; Male; Meat; Muscle Proteins; Muscles; Octoxynol; Pepstatins; Phenylmethylsulfonyl Fluoride; Postmortem Changes; Solubility

1994