calcimycin and indoleacetic-acid

calcimycin has been researched along with indoleacetic-acid* in 3 studies

Other Studies

3 other study(ies) available for calcimycin and indoleacetic-acid

ArticleYear
Confocal imaging of ionised calcium in living plant cells.
    Cell calcium, 1990, Volume: 11, Issue:4

    Laser-scanning confocal microscopy has been used in conjunction with Fluo-3, a highly fluorescent visible wavelength probe for Ca2+, to visualize Ca2(+)-dynamics in the function of living plant cells. This combination has overcome many of the problems that have limited the use of fluorescence imaging techniques in the study of the role of cations (Ca2+ and H+) in plant cell physiology and enables these processes to be studied in single cells within intact plant tissue preparations. Maize coleoptiles respond to application of ionophores and plant growth hormones with elevations in cytosolic Ca2+ that can be resolved with a high degree of spatial resolution and can be interpreted quantitatively.

    Topics: Aniline Compounds; Calcimycin; Calcium; Cytoplasm; Fluorescent Dyes; Indoleacetic Acids; Microscopy, Fluorescence; Plants; Xanthenes; Zea mays

1990
On the nature and origin of the calcium asymmetry arising during gravitropic response in etiolated pea epicotyls.
    Plant physiology, 1987, Volume: 85

    Seven day old etiolated pea epicotyls were loaded symmetrically with 3H-indole 3-acetic acid (IAA) or 45Ca2+, then subjected to 1.5 hours of 1g gravistimulation. Epidermal peels taken from top and bottom surfaces after 90 minutes showed an increase in IAA on the lower side and of Ca2+ on the upper side. Inhibitors of IAA movement (TIBA, 9-hydroxyfluorene carboxylic acid) block the development of both IAA and Ca2+ asymmetries, but substances known to interfere with normal Ca2+ transport (nitrendipine, nisoldipine, Bay K 8644, A 23187) do not significantly alter either IAA or Ca2+ asymmetries. These substances, however, are active in modifying both Ca2+ uptake and efflux through oat and pea leaf protoplast membranes. We conclude that the 45Ca2+ fed to pea epicotyls occurs largely in the cell wall, and that auxin movement is primary and Ca2+ movement secondary in gravitropism. We hypothesize that apoplastic Ca2+ changes during graviresponse because it is displaced by H+ secreted through auxin-induced proton release. This proposed mechanism is supported by localized pH experiments, in which filter paper soaked in various buffers was applied to one side of a carborundum-abraded epicotyls. Buffer at pH 3 increases calcium loss from the side to which it is applied, whereas pH 7 buffer decreases it. Moreover, 10 micromolar IAA and 1 micromolar fusicoccin, which promote H+ efflux, increase Ca2+ release from pea epicotyl segments, whereas cycloheximide, which inhibits H+ efflux, has the reverse effect. We suggest that Ca2+ does not redistribute actively during gravitropism: the asymmetry arises because of its release from the wall adjacent to the region of high IAA concentration, proton secretion, and growth. Thus, the asymmetric distribution of Ca2+ appears to be a consequence of growth stimulation, not a critical step in the early phase of the graviresponse.

    Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Biological Transport; Calcimycin; Calcium; Calcium Channel Agonists; Calcium Channel Blockers; Cycloheximide; Glycosides; Gravitation; Gravitropism; Hydrogen-Ion Concentration; Indoleacetic Acids; Ionophores; Nisoldipine; Nitrendipine; Pisum sativum; Plant Growth Regulators; Plant Shoots; Protein Synthesis Inhibitors; Protoplasts

1987
Voltage transients elicited by sudden step-up of auxin.
    Plant, cell & environment, 1984, Volume: 7

    It is hypothesized (i) that the molecular mechanism for the reception of friction and flexure and the mechanism by which auxin enhances ethylene production have in common a release of free calcium into the cytosol, (ii) that elevated cytosolic calcium initiates vesicle exocytosis, and (iii) that the vesicles release a factor or set of factors which depolarizes the plasmalemma and promotes ethylene synthesis. One consequence of such exocytosis should be small, extracellularly observable voltage transients. Transients, ranging in size up to 600 microvolts and possessing risetimes (10-90%) of approximately 200 ms, are known to be elicited in etiolated stems of Pisum sativum L. by friction and are here shown to be elicited by sudden increase of auxin concentration and also by a Ca2+ ionophore.

    Topics: Calcimycin; Calcium; Calmodulin; Cytosol; Electrophysiology; Ethylenes; Exocytosis; Indoleacetic Acids; Light; Lyases; Physical Stimulation; Pisum sativum; Plant Growth Regulators; Polyethylene Glycols

1984