calcimycin has been researched along with formylmethionyl-leucyl-phenylalanine-methyl-ester* in 2 studies
2 other study(ies) available for calcimycin and formylmethionyl-leucyl-phenylalanine-methyl-ester
Article | Year |
---|---|
Modulation of neutrophil phospholipase C activity and cyclic AMP levels by fMLP-OMe analogues.
The N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-OMe (1) analogues for-Thp-Leu-Ain-OMe (2), for-Thp-Leu-Phe-OMe (3), for-Met-Leu-Ain-OMe (4), for-Met-Delta(z)Leu-Phe-OMe (5), for-Met-Lys-Phe-For-Met-Lys-Phe (6), for-Met-Leu-Pheol-COMe (7), and for-Nle-Leu-Phe-OMe (8) have been studied. Some of these have been found selective towards the activation of different biological responses of human neutrophils. In particular, peptides 2 and 3, which evoke only chemotaxis, are ineffective in enhancing inositol phosphate, as well as cyclic AMP (cAMP) levels. On the contrary, analogues 5 and 7, which induce superoxide anion production and degranulation, but not chemotaxis, significantly increase the levels of the two intracellular messengers, as is the case of the full agonists 1 and 6. The Ca(2+) ionophore A23187 also activates phospholipase C (PLC) and increases the nucleotide levels; when tested in combination with peptide 1 or 5, a supra-additive enhancement of cAMP concentration is obtained. The PLC blocker, U-73122, inhibits the formylpeptide-induced inositol phosphate formation, as well as cAMP increase. Moreover, this drug drastically reduces superoxide anion release triggered by 1 or 5, whereas it inhibits to a much lesser extent neutrophil chemotaxis induced by 1 or 2. Our results suggest that: (i) PLC stimulation is involved in cAMP enhancement by formylpeptides; (ii) the activation of PLC by formylpeptides, in conditions of increased Ca(2+) influx, induces a supra-additive enhancement of the nucleotide; (iii) the inability of pure chemoattractants to significantly alter the PLC activity or cAMP level, differently from full agonists or peptides specific in inducing superoxide anion release, appears as a general property. Thus, the activation of neutrophil PLC seems essential for superoxide anion release, but less involved in the chemotactic response. Topics: Calcimycin; Calcium; Cells, Cultured; Chemotaxis, Leukocyte; Cyclic AMP; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Inhibitors; Estrenes; Humans; Ionophores; Ligands; Models, Chemical; N-Formylmethionine Leucyl-Phenylalanine; Neutrophils; Pyrrolidinones; Superoxides; Time Factors; Type C Phospholipases | 2001 |
Evidence for the involvement of the NADPH oxidase enzyme complex in the optimal accumulation of Platelet-activating factor in the human cell line PLB-985.
Platelet-activating factor (PAF) is an early product of the inflammatory environment, influencing development and resolution of inflammation. Its production is greater in neutrophils and macrophages, which predominantly synthesize 1-alkyl sn-2 acetyl glycerophosphocholine (GPC) than in nongranulocytes (B cells and endothelial cells), which lack a respiratory burst and synthesize 1-acyl sn-2 acetyl GPC as their major PAF species. This study investigated whether the respiratory burst was responsible for the quantitative and qualitative differences in sn-2 acetyl GPC species generation by neutrophils and macrophages versus those cells lacking the NADPH oxidase complex. The myeloid cell line PLB-985 (capable of differentiation into neutrophils) was used to test this hypothesis, since these cells had previously been generated with a non-functional respiratory burst (X-CGD PLB-985). Differentiated PLB-985 cells underwent a large respiratory burst in response to PMA (phorbol ester), and smaller respiratory bursts in response to A23187 (calcium ionophore), and the bacterial polypeptide fMLP (receptor mediated activation). Concurrently, treated cells were assessed for production of 1-hexadecyl and 1-palmitoyl sn-2 acetyl GPC species by gas chromatography/mass spectrometry. Neither cell type generated these lipid species in response to PMA, but both cell types generated equal levels of sn-2 acetyl GPC in response to A23187, with five times more 1-hexadecyl than 1-palmitoyl species. Upon fMLP activation, X-CGD PLB-985 cells produced significantly less 1-hexadecyl and 1-palmitoyl sn-2 acetyl GPC in comparison to the wild-type PLB-985 cells. These findings suggest phagocytic oxidant production by NADPH oxidase is not essential for sn-2 acetyl GPC generation, but appears important for optimal production of PAF in response to some stimuli. Topics: Calcimycin; Calcium; Cell Line; Gas Chromatography-Mass Spectrometry; Glycerylphosphorylcholine; Humans; Ionophores; Leukemia, Myeloid; N-Formylmethionine Leucyl-Phenylalanine; NADPH Oxidases; Phosphatidylcholines; Platelet Activating Factor; Receptors, Formyl Peptide; Receptors, Immunologic; Receptors, Peptide; Superoxides; Tetradecanoylphorbol Acetate | 2001 |