calcimycin has been researched along with acetovanillone* in 3 studies
3 other study(ies) available for calcimycin and acetovanillone
Article | Year |
---|---|
Local production of O2- by NAD(P)H oxidase in the sarcoplasmic reticulum of coronary arterial myocytes: cADPR-mediated Ca2+ regulation.
The present study was designed to determine whether the sarcoplasmic reticulum (SR) could locally produce superoxide (O2-) via NAD(P)H oxidase (NOX) in coronary arterial myocytes (CAMs) and to address whether cADPR-RyR/Ca2+ signaling pathway regulates this local O2- production from the SR. Using confocal microscopic imaging analysis in intact single CAMs, a cell-permeable indicator CM-H2DCFDA for dynamic changes in intracellular ROS (in green color) and a highly selective ER-Tracker Red dye for tracking of the SR were found co-localized. A quantitative analysis based on the intensity of different spectra demonstrated a local O2- production derived from the SR. M(1)-receptor agonist, oxotremorine (Oxo) and a Ca2+ ionophore, A23187, time-dependently increased this O2- production colocalized with the SR. NOX inhibitors, diphenylene iodonium (DPI) and apocynin (Apo), or superoxide dismutase (SOD) and catalase, and Nox4 (a major intracellular NOX subunit) siRNA all substantially blocked this local production of O2-, demonstrating an involvement of NOX. This SR-derived O2- production was also abolished by the inhibitors of cyclic ADP-ribose (cADPR)-mediated Ca2+ signaling, such as nicotinamide (Nicot, 6 mM), ryanodine (Rya, 50 muM) or 8-Br-cADPR (30 microM). However, IP3 antagonist, 2-APB (50 microM) had no effect. In CAMs transfected with siRNA of ADP-ribosyl cyclase or RyR, this SR O2- production was attenuated. Electron spin resonance (ESR) spectromic assay in purified SR also demonstrated the production of O2- that was dependent on NOX activity and Ca2+ concentrations. These results provide direct evidence that O2- could be locally produced via NOX on the SR and that this local O2- producing system is controlled by cADPR-RyR/Ca2+ signaling pathway. Topics: Acetophenones; ADP-ribosyl Cyclase; Animals; Calcimycin; Calcium; Calcium Signaling; Catalase; Cattle; Cells, Cultured; Coronary Vessels; Cyclic ADP-Ribose; Electron Spin Resonance Spectroscopy; Enzyme Inhibitors; Ionophores; Microscopy, Confocal; Muscarinic Agonists; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; NADPH Oxidases; Niacinamide; Onium Compounds; Oxotremorine; Receptor, Muscarinic M1; RNA Interference; RNA, Small Interfering; Ryanodine; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum; Superoxide Dismutase; Superoxides; Time Factors | 2008 |
Adverse balance of nitric oxide/peroxynitrite in the dysfunctional endothelium can be reversed by statins.
Vascular endothelial dysfunction is a complex phenomenon that might be caused by a deficiency of nitric oxide (NO) and an overproduction of peroxynitrite (ONOO-). This study used a nanotechnological approach to monitor the in vitro effect of statins on the [NO]/[ONOO-] balance in normal and dysfunctional endothelial cells. NO and (ONOO-) were measured by electrochemical nanosensors in a single human umbilical vein endothelial cell (HUVEC) treated with atorvastatin or simvastatin for 24 hours in the presence or absence of 50 microg/mL oxidized-LDL. An imbalance between [NO]/[ONOO-] concentrations was used as an indicator of endothelial dysfunction and correlated with endothelial nitric oxide synthase (eNOS) expression. Ox-LDL induced dysfunction of the endothelium by uncoupling eNOS. NO concentration decreased from 300 +/- 12 to 146 +/- 8 nmol/L and (ONOO-) increased from 200 +/- 9 to 360 +/- 13 nmol/L. The [NO]/[ONOO-] balance decreased from 1.50 +/- 0.04 (control) to 0.40 +/- 0.03 for cells co-incubated with ox-LDL. Treatment with statins reversed eNOS uncoupling, induced by oxidized-LDL and significantly increased the [NO]/[ONOO-] balance to 1.2 +/- 0.1. These results demonstrate that statins can restore endothelial function by increasing eNOS expression, decreasing eNOS uncoupling, reducing the (ONOO-) level (nitroxidative stress), and shifting the [NO]/[ONOO-] balance towards NO. Topics: Acetophenones; Atorvastatin; Calcimycin; Cells, Cultured; Dose-Response Relationship, Drug; Endothelial Cells; Endothelium, Vascular; Enzyme Inhibitors; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Lipoproteins, LDL; NADPH Oxidases; Nitric Oxide; Nitric Oxide Synthase Type III; Peroxynitrous Acid; Pyrroles; Simvastatin | 2007 |
Bone morphogenic protein-4 induces hypertension in mice: role of noggin, vascular NADPH oxidases, and impaired vasorelaxation.
Recent in vitro studies have shown that disturbed flow and oxidative conditions induce the expression of bone morphogenic proteins (BMPs 2 and 4) in cultured endothelial cells. BMPs can stimulate superoxide production and inflammatory responses in endothelial cells, raising the possibility that BMPs may play a role in vascular diseases such as hypertension and atherosclerosis. In this study, we examined the hypothesis that BMP4 would induce hypertension in intact animals by increasing superoxide production from vascular nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and an impairment of vasodilation responses.. BMP4 infusion by osmotic pumps increased systolic blood pressure in a time- and dose-dependent manner in both C57BL/6 mice (from 101 to 125 mm Hg) and apolipoprotein E-null mice (from 107 to 146 mm Hg) after 4 weeks. Cotreatment with the BMP antagonist noggin or the NADPH oxidase inhibitor apocynin completely blocked the BMP4 effect. In addition, BMP4 infusion stimulated aortic NADPH oxidase activity and impaired vasorelaxation, both of which were prevented either by coinfusing noggin or by treating the isolated aortas with apocynin. BMP4, however, did not cause significant changes in maximum relaxation induced by the endothelium-independent vasodilator nitroglycerin. Remarkably, BMP4 infusion failed to stimulate aortic NADPH oxidases, increase blood pressure, and impair vasodilation responses in p47phox-deficient mice.. These results suggest that BMP4 infusion induces hypertension in mice in a vascular NADPH oxidase-dependent manner and the subsequent endothelial dysfunction. We suggest that BMP4 is a novel mediator of endothelial dysfunction and hypertension and that noggin and its analogs could be used as therapeutic agents for treating vascular diseases. Topics: Acetophenones; Acetylcholine; Animals; Aorta, Thoracic; Apolipoproteins E; Bone Morphogenetic Protein 4; Bone Morphogenetic Proteins; Calcimycin; Carrier Proteins; Diet, Atherogenic; Endothelium, Vascular; Enzyme Activation; Humans; Hyperlipoproteinemia Type II; Hypertension; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; NADPH Oxidases; Nitroglycerin; Recombinant Fusion Proteins; Superoxides; Vasodilator Agents | 2006 |