caffeic acid phenethyl ester has been researched along with 3,3',4,5'-tetrahydroxystilbene in 6 studies
Studies (caffeic acid phenethyl ester) | Trials (caffeic acid phenethyl ester) | Recent Studies (post-2010) (caffeic acid phenethyl ester) | Studies (3,3',4,5'-tetrahydroxystilbene) | Trials (3,3',4,5'-tetrahydroxystilbene) | Recent Studies (post-2010) (3,3',4,5'-tetrahydroxystilbene) |
---|---|---|---|---|---|
840 | 1 | 469 | 547 | 2 | 298 |
Protein | Taxonomy | caffeic acid phenethyl ester (IC50) | 3,3',4,5'-tetrahydroxystilbene (IC50) |
---|---|---|---|
Tyrosine-protein kinase Lck | Homo sapiens (human) | 5 | |
Polyunsaturated fatty acid 5-lipoxygenase | Homo sapiens (human) | 0.67 | |
Tyrosine-protein kinase SYK | Homo sapiens (human) | 10 | |
Lactoylglutathione lyase | Homo sapiens (human) | 0.76 | |
large T antigen | Betapolyomavirus macacae | 16.35 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (50.00) | 29.6817 |
2010's | 2 (33.33) | 24.3611 |
2020's | 1 (16.67) | 2.80 |
Authors | Studies |
---|---|
Harima, S; Kageura, T; Matsuda, H; Morikawa, T; Toguchida, I; Yoshikawa, M | 1 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Khan, MN; McCarron, PA; Tambuwala, MM; Thompson, P | 1 |
Khare, S; Khare, T; Palakurthi, S; Palakurthi, SS; Shah, BM | 1 |
1 review(s) available for caffeic acid phenethyl ester and 3,3',4,5'-tetrahydroxystilbene
Article | Year |
---|---|
Natural Product-Based Nanomedicine in Treatment of Inflammatory Bowel Disease.
Topics: Animals; Benzoquinones; Biological Products; Biomimetics; Caffeic Acids; Curcumin; Cytokines; Exosomes; Humans; Inflammation; Inflammatory Bowel Diseases; Insecta; Macromolecular Substances; Nanomedicine; Oxidative Stress; Phenylethyl Alcohol; Phytochemicals; Plant Extracts; Polysaccharides; Quercetin; Resveratrol; Stilbenes; Transcription Factors; Translational Research, Biomedical; Vasoactive Intestinal Peptide; Zingiber officinale | 2020 |
5 other study(ies) available for caffeic acid phenethyl ester and 3,3',4,5'-tetrahydroxystilbene
Article | Year |
---|---|
Effects of stilbene constituents from rhubarb on nitric oxide production in lipopolysaccharide-activated macrophages.
Topics: Anthraquinones; Emodin; Gallic Acid; Glucosides; Lipopolysaccharides; Macrophage Activation; Macrophages; Naphthalenes; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitrites; Plant Extracts; Plants, Medicinal; Rheum; Stilbenes; Structure-Activity Relationship | 2000 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection | 2009 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Albumin nano-encapsulation of caffeic acid phenethyl ester and piceatannol potentiated its ability to modulate HIF and NF-kB pathways and improves therapeutic outcome in experimental colitis.
Topics: Albumins; Animals; Biological Availability; Caffeic Acids; Colitis; Dextran Sulfate; Disease Models, Animal; Drug Combinations; Drug Compounding; Drug Synergism; Gene Expression Regulation; Hypoxia-Inducible Factor 1, alpha Subunit; Mice; Nanoparticles; Particle Size; Phenylethyl Alcohol; Signal Transduction; Stilbenes; Transcription Factor RelA | 2019 |