cadmium chloride has been researched along with kainic acid in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (14.29) | 18.2507 |
2000's | 5 (71.43) | 29.6817 |
2010's | 1 (14.29) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Berman, NE; Klaassen, CD; Zheng, H | 1 |
Anderson, AE; Leung, V; Misonou, H; Misonou, K; Mohapatra, DP; Park, EW; Trimmer, JS; Zhen, D | 1 |
Shen, W | 1 |
Coons, S; Ellsworth, K; Johnson, E; Kerrigan, JF; Kim, DY; Lue, LF; Nowak, L; Rekate, H; Rho, JM; St John, PA; Wu, J; Xu, L | 1 |
Galik, J; Gerber, G; Park, YK; Randić, M; Voitenko, N; Youn, DH | 1 |
Anderson, RL; Daniele, C; Engelman, HS; Macdermott, AB | 1 |
Cho, JH; Choi, BJ; Choi, IS; Jang, IS; Lee, KH; Lee, MG; Park, HM | 1 |
7 other study(ies) available for cadmium chloride and kainic acid
Article | Year |
---|---|
Chemical modulation of metallothionein I and III mRNA in mouse brain.
Topics: Animals; Base Sequence; Blotting, Northern; Brain; Cadmium; Cadmium Chloride; Chlorides; Dexamethasone; Ethanol; Gene Expression Regulation; Kainic Acid; Lipopolysaccharides; Liver; Male; Metallothionein; Mice; Mice, Inbred C57BL; Molecular Sequence Data; RNA, Messenger; Zinc Compounds | 1995 |
Regulation of ion channel localization and phosphorylation by neuronal activity.
Topics: Animals; Animals, Newborn; Blotting, Western; Cadmium Chloride; Calcimycin; Calcium Channel Blockers; Cell Count; Cells, Cultured; Cyclosporine; Delayed Rectifier Potassium Channels; Dendrites; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Glutamic Acid; Hippocampus; Ion Channel Gating; Ionophores; Kainic Acid; Membrane Potentials; Neuronal Plasticity; Nitrendipine; Nitriles; Okadaic Acid; Patch-Clamp Techniques; Phosphoprotein Phosphatases; Phosphorylation; Potassium; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Potassium Chloride; Pyramidal Cells; Pyrethrins; Rats; Seizures; Shab Potassium Channels; Time Factors; Translocation, Genetic | 2004 |
Repetitive light stimulation inducing glycine receptor plasticity in the retinal neurons.
Topics: Animals; Cadmium Chloride; Calcium Channel Blockers; Chelating Agents; Cobalt; Drug Interactions; Egtazic Acid; Electric Stimulation; Excitatory Amino Acid Agonists; Glutamic Acid; Glycine; In Vitro Techniques; Kainic Acid; Larva; Membrane Potentials; Models, Neurological; Neuronal Plasticity; Neurons; Nifedipine; Patch-Clamp Techniques; Photic Stimulation; Receptors, Glycine; Retina; Time Factors; Urodela | 2005 |
Electrophysiological properties of human hypothalamic hamartomas.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Adolescent; Adult; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Anesthetics, Local; Bicuculline; Cadmium Chloride; Child; Child, Preschool; Drug Interactions; Electrophysiology; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Female; GABA Antagonists; gamma-Aminobutyric Acid; Glial Fibrillary Acidic Protein; Glutamate Decarboxylase; Glutamic Acid; Hamartoma; Humans; Hypothalamus; Immunohistochemistry; In Vitro Techniques; Infant; Isoenzymes; Kainic Acid; Male; Membrane Potentials; Neurons; Patch-Clamp Techniques; Periodicity; Phosphopyruvate Hydratase; Potassium Channel Blockers; Tetraethylammonium; Tetrodotoxin; Valine | 2005 |
Altered long-term synaptic plasticity and kainate-induced Ca2+ transients in the substantia gelatinosa neurons in GLU(K6)-deficient mice.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Age Factors; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Benzoates; Cadmium Chloride; Calcium; Dose-Response Relationship, Radiation; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamates; Glycine; In Vitro Techniques; Kainic Acid; Membrane Potentials; Mice; Mice, Knockout; Neuronal Plasticity; Neurons; Patch-Clamp Techniques; Protein Subunits; Receptors, Kainic Acid; Substantia Gelatinosa | 2005 |
Presynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors modulate release of inhibitory amino acids in rat spinal cord dorsal horn.
Topics: Age Factors; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Animals, Newborn; Benzodiazepines; Cadmium Chloride; Calcium; Calcium Channel Blockers; Dose-Response Relationship, Drug; Drug Interactions; Electric Stimulation; gamma-Aminobutyric Acid; Glycine; In Vitro Techniques; Kainic Acid; Neural Inhibition; Patch-Clamp Techniques; Posterior Horn Cells; Rats; Receptors, AMPA; Receptors, Presynaptic; Spinal Cord | 2006 |
Pregnenolone sulfate enhances spontaneous glutamate release by inducing presynaptic Ca2+-induced Ca2+ release.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Biophysics; Cadmium Chloride; Calcium; Calcium Channel Blockers; Chelating Agents; Dose-Response Relationship, Drug; Drug Interactions; Egtazic Acid; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Hippocampus; In Vitro Techniques; Kainic Acid; Long-Term Potentiation; Neurons; Patch-Clamp Techniques; Piperazines; Pregnenolone; Presynaptic Terminals; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Tetrodotoxin | 2010 |