Page last updated: 2024-08-22

cadmium chloride and kainic acid

cadmium chloride has been researched along with kainic acid in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (14.29)18.2507
2000's5 (71.43)29.6817
2010's1 (14.29)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Berman, NE; Klaassen, CD; Zheng, H1
Anderson, AE; Leung, V; Misonou, H; Misonou, K; Mohapatra, DP; Park, EW; Trimmer, JS; Zhen, D1
Shen, W1
Coons, S; Ellsworth, K; Johnson, E; Kerrigan, JF; Kim, DY; Lue, LF; Nowak, L; Rekate, H; Rho, JM; St John, PA; Wu, J; Xu, L1
Galik, J; Gerber, G; Park, YK; Randić, M; Voitenko, N; Youn, DH1
Anderson, RL; Daniele, C; Engelman, HS; Macdermott, AB1
Cho, JH; Choi, BJ; Choi, IS; Jang, IS; Lee, KH; Lee, MG; Park, HM1

Other Studies

7 other study(ies) available for cadmium chloride and kainic acid

ArticleYear
Chemical modulation of metallothionein I and III mRNA in mouse brain.
    Neurochemistry international, 1995, Volume: 27, Issue:1

    Topics: Animals; Base Sequence; Blotting, Northern; Brain; Cadmium; Cadmium Chloride; Chlorides; Dexamethasone; Ethanol; Gene Expression Regulation; Kainic Acid; Lipopolysaccharides; Liver; Male; Metallothionein; Mice; Mice, Inbred C57BL; Molecular Sequence Data; RNA, Messenger; Zinc Compounds

1995
Regulation of ion channel localization and phosphorylation by neuronal activity.
    Nature neuroscience, 2004, Volume: 7, Issue:7

    Topics: Animals; Animals, Newborn; Blotting, Western; Cadmium Chloride; Calcimycin; Calcium Channel Blockers; Cell Count; Cells, Cultured; Cyclosporine; Delayed Rectifier Potassium Channels; Dendrites; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Glutamic Acid; Hippocampus; Ion Channel Gating; Ionophores; Kainic Acid; Membrane Potentials; Neuronal Plasticity; Nitrendipine; Nitriles; Okadaic Acid; Patch-Clamp Techniques; Phosphoprotein Phosphatases; Phosphorylation; Potassium; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Potassium Chloride; Pyramidal Cells; Pyrethrins; Rats; Seizures; Shab Potassium Channels; Time Factors; Translocation, Genetic

2004
Repetitive light stimulation inducing glycine receptor plasticity in the retinal neurons.
    Journal of neurophysiology, 2005, Volume: 94, Issue:3

    Topics: Animals; Cadmium Chloride; Calcium Channel Blockers; Chelating Agents; Cobalt; Drug Interactions; Egtazic Acid; Electric Stimulation; Excitatory Amino Acid Agonists; Glutamic Acid; Glycine; In Vitro Techniques; Kainic Acid; Larva; Membrane Potentials; Models, Neurological; Neuronal Plasticity; Neurons; Nifedipine; Patch-Clamp Techniques; Photic Stimulation; Receptors, Glycine; Retina; Time Factors; Urodela

2005
Electrophysiological properties of human hypothalamic hamartomas.
    Annals of neurology, 2005, Volume: 58, Issue:3

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Adolescent; Adult; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Anesthetics, Local; Bicuculline; Cadmium Chloride; Child; Child, Preschool; Drug Interactions; Electrophysiology; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Female; GABA Antagonists; gamma-Aminobutyric Acid; Glial Fibrillary Acidic Protein; Glutamate Decarboxylase; Glutamic Acid; Hamartoma; Humans; Hypothalamus; Immunohistochemistry; In Vitro Techniques; Infant; Isoenzymes; Kainic Acid; Male; Membrane Potentials; Neurons; Patch-Clamp Techniques; Periodicity; Phosphopyruvate Hydratase; Potassium Channel Blockers; Tetraethylammonium; Tetrodotoxin; Valine

2005
Altered long-term synaptic plasticity and kainate-induced Ca2+ transients in the substantia gelatinosa neurons in GLU(K6)-deficient mice.
    Brain research. Molecular brain research, 2005, Dec-07, Volume: 142, Issue:1

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Age Factors; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Benzoates; Cadmium Chloride; Calcium; Dose-Response Relationship, Radiation; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamates; Glycine; In Vitro Techniques; Kainic Acid; Membrane Potentials; Mice; Mice, Knockout; Neuronal Plasticity; Neurons; Patch-Clamp Techniques; Protein Subunits; Receptors, Kainic Acid; Substantia Gelatinosa

2005
Presynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors modulate release of inhibitory amino acids in rat spinal cord dorsal horn.
    Neuroscience, 2006, May-12, Volume: 139, Issue:2

    Topics: Age Factors; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Animals, Newborn; Benzodiazepines; Cadmium Chloride; Calcium; Calcium Channel Blockers; Dose-Response Relationship, Drug; Drug Interactions; Electric Stimulation; gamma-Aminobutyric Acid; Glycine; In Vitro Techniques; Kainic Acid; Neural Inhibition; Patch-Clamp Techniques; Posterior Horn Cells; Rats; Receptors, AMPA; Receptors, Presynaptic; Spinal Cord

2006
Pregnenolone sulfate enhances spontaneous glutamate release by inducing presynaptic Ca2+-induced Ca2+ release.
    Neuroscience, 2010, Nov-24, Volume: 171, Issue:1

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Biophysics; Cadmium Chloride; Calcium; Calcium Channel Blockers; Chelating Agents; Dose-Response Relationship, Drug; Drug Interactions; Egtazic Acid; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Hippocampus; In Vitro Techniques; Kainic Acid; Long-Term Potentiation; Neurons; Patch-Clamp Techniques; Piperazines; Pregnenolone; Presynaptic Terminals; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Tetrodotoxin

2010