c-peptide has been researched along with lauric-acid* in 1 studies
1 trial(s) available for c-peptide and lauric-acid
Article | Year |
---|---|
Effects of intraduodenal infusion of lauric acid and L-tryptophan, alone and combined, on glucoregulatory hormones, gastric emptying and glycaemia in healthy men.
In healthy men, intraduodenal administration of the fatty acid, lauric acid ('C12') and the amino acid, L-tryptophan ('TRP'), at loads that individually do not affect energy intake, reduce energy intake substantially when combined. C12 and TRP may also stimulate cholecystokinin and glucagon-like peptide-1 (GLP-1), which both slow gastric emptying, a key determinant of postprandial blood glucose. Accordingly, combination of C12 and TRP has the potential to reduce post-meal glycaemia more than either nutrient alone.. Twelve healthy, lean men (age (mean ± SD): 28 ± 7 years) received, on 4 separate occasions, 45-min intraduodenal infusions of C12 (0.3 kcal/min), TRP (0.1 kcal/min), C12 + TRP (0.4 kcal/min), or 0.9% saline (control), in a randomised, double-blind fashion. 30 min after commencement of the infusion a mixed-nutrient drink was consumed and gastric emptying measured (. C12 + TRP and C12 delayed the rise in, but did not affect the overall glycaemic response to the drink, compared with control and TRP (all P < 0.05). C12 + TRP slowed gastric emptying compared with control and TRP (both P < 0.005), and C12 non-significantly slowed gastric emptying compared with control (P = 0.090). C12 + TRP and C12 delayed the rise in C-peptide and insulin, and also stimulated CCK and glucagon, compared with control and TRP (all P < 0.05). Only C12 + TRP stimulated early and overall GLP-1 compared with control (P < 0.05).. In healthy men, C12 + TRP and C12, in the loads administered, had comparable effects to delay the rise in glucose following a nutrient drink, probably primarily by slowing of gastric emptying, as a result of CCK and GLP-1 stimulation, while TRP had no effect. Topics: Adult; Blood Glucose; C-Peptide; Cholecystokinin; Double-Blind Method; Energy Intake; Gastric Emptying; Glucagon; Glucagon-Like Peptide 1; Humans; Insulin; Lauric Acids; Male; Tryptophan; Young Adult | 2022 |