Page last updated: 2024-09-04

butylscopolammonium bromide and tretazicar

butylscopolammonium bromide has been researched along with tretazicar in 2 studies

Compound Research Comparison

Studies
(butylscopolammonium bromide)
Trials
(butylscopolammonium bromide)
Recent Studies (post-2010)
(butylscopolammonium bromide)
Studies
(tretazicar)
Trials
(tretazicar)
Recent Studies (post-2010) (tretazicar)
695165149205642

Protein Interaction Comparison

ProteinTaxonomybutylscopolammonium bromide (IC50)tretazicar (IC50)
Nitroreductase AEscherichia coli O157:H70.89

Research

Studies (2)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (100.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M1

Other Studies

2 other study(ies) available for butylscopolammonium bromide and tretazicar

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
    Journal of medicinal chemistry, 2008, Nov-13, Volume: 51, Issue:21

    Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship

2008