Page last updated: 2024-08-22

buthionine sulfoximine and wortmannin

buthionine sulfoximine has been researched along with wortmannin in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (33.33)18.2507
2000's2 (66.67)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J1
Gwag, BJ; Jou, I; Ko, HW; Noh, JS; Ryu, BR1

Other Studies

3 other study(ies) available for buthionine sulfoximine and wortmannin

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
    Nature chemical biology, 2009, Volume: 5, Issue:10

    Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection

2009
Phosphatidylinositol 3-kinase-mediated regulation of neuronal apoptosis and necrosis by insulin and IGF-I.
    Journal of neurobiology, 1999, Jun-15, Volume: 39, Issue:4

    Topics: Adenosine Triphosphate; Androstadienes; Animals; Apoptosis; Buthionine Sulfoximine; Calcium-Calmodulin-Dependent Protein Kinases; Cells, Cultured; Chromones; Enzyme Activation; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Flavonoids; Hypoglycemic Agents; Insulin; Insulin Antagonists; Insulin-Like Growth Factor I; Iron; Mice; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Morpholines; N-Methylaspartate; Necrosis; Neocortex; Neurons; Neuroprotective Agents; Oxidative Stress; Phosphatidylinositol 3-Kinases; Phosphorus Radioisotopes; Phosphorylation; Staurosporine; Wortmannin

1999