buthionine sulfoximine has been researched along with dizocilpine maleate in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 3 (42.86) | 18.2507 |
2000's | 4 (57.14) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J | 1 |
Park, J; Thomas, AG; Vornov, JJ | 1 |
Gwag, BJ; Jou, I; Park, EC | 1 |
Jenner, P; McNaught, KS | 1 |
Anand, S; Gulati, K; Ray, A; Vijayan, VK | 1 |
Coelho, IS; Dafre, AL; Franco, JL; Meotti, FC; Rocha, JB; Santos, AR | 1 |
7 other study(ies) available for buthionine sulfoximine and dizocilpine maleate
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection | 2009 |
Regional vulnerability to endogenous and exogenous oxidative stress in organotypic hippocampal culture.
Topics: Animals; Antioxidants; Buthionine Sulfoximine; Deferoxamine; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Glutathione; Hippocampus; N-Methylaspartate; Neuroprotective Agents; Organ Culture Techniques; Oxidative Stress; Paraquat; Rats | 1998 |
Nerve growth factor potentiates the oxidative necrosis of striatal cholinergic neurons.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Acetylcholinesterase; Animals; Antioxidants; Brain-Derived Neurotrophic Factor; Buthionine Sulfoximine; Cells, Cultured; Chromans; Corpus Striatum; Cycloheximide; Dizocilpine Maleate; Drug Synergism; Fetus; Free Radicals; Iron; Necrosis; Nerve Degeneration; Nerve Growth Factors; Neuroglia; Neurons; Neurotoxins; Rats; Rats, Sprague-Dawley | 1998 |
Altered glial function causes neuronal death and increases neuronal susceptibility to 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced toxicity in astrocytic/ventral mesencephalic co-cultures.
Topics: 1-Methyl-4-phenylpyridinium; Animals; Apoptosis; Astrocytes; Buthionine Sulfoximine; Cells, Cultured; Coculture Techniques; Dizocilpine Maleate; Dopamine; Electron Transport Complex I; Excitatory Amino Acid Antagonists; Glutathione; Lipopolysaccharides; Mesencephalon; NADH, NADPH Oxidoreductases; Oxidopamine; Parkinson Disease; Rats; Rats, Sprague-Dawley | 1999 |
Pharmacological studies on mechanisms of aminophylline-induced seizures in rats.
Topics: Aminophylline; Animals; Anticonvulsants; Antioxidants; Buthionine Sulfoximine; Dizocilpine Maleate; Dose-Response Relationship, Drug; Enzyme Inhibitors; Free Radical Scavengers; Free Radicals; Male; Oxidants; Oxidative Stress; Pentoxifylline; Phenytoin; Phosphodiesterase Inhibitors; Rats; Rats, Wistar; Reactive Oxygen Species; Rolipram; Seizures; Trientine | 2005 |
Redox modulation at the peripheral site alters nociceptive transmission in vivo.
Topics: Alkylating Agents; Analgesics; Animals; Azoles; Behavior, Animal; Buthionine Sulfoximine; Disease Models, Animal; Dithiothreitol; Dizocilpine Maleate; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Female; Glutamate-Cysteine Ligase; Glutamic Acid; Glutathione; Iodoacetates; Isoindoles; Mice; Organoselenium Compounds; Oxidation-Reduction; Pain; Receptors, N-Methyl-D-Aspartate; Reducing Agents; Signal Transduction; Sulfhydryl Compounds | 2009 |