buprenorphine and morphine-6-glucuronide

buprenorphine has been researched along with morphine-6-glucuronide* in 4 studies

Reviews

1 review(s) available for buprenorphine and morphine-6-glucuronide

ArticleYear
Renal impairment: a challenge for opioid treatment? The role of buprenorphine.
    Palliative medicine, 2006, Volume: 20 Suppl 1

    Impairment of renal function is common among elderly patients due to an age-related decline in renal excretory function. In addition, many diseases such as hypertension and diabetes mellitus are associated with an accelerated decline in renal function. Renal dysfunction affects the metabolism of compounds and thus has important therapeutic consequences for drug safety. For pain patients who have reduced renal function such as those in palliative care, most opioids used for chronic pain treatment should be administered at reduced dosages, with increased dosage intervals, or not at all because of the risk of accumulation of the parent compound or its metabolites. For instance, for morphine or codeine, active metabolites are formed in the liver and cleared by the kidney and may therefore accumulate in cases of renal dysfunction. In contrast, buprenorphine can be administered at normal doses in patients with renal dysfunction because it is mainly excreted through the liver. In patients undergoing regular haemodialysis treatment, removal of an opioid during dialysis varies between individuals based upon a number of factors including the dialysis technique used. Morphine appears to be difficult to process in haemodialysis patients due to possible 'rebound' of metabolites between dialysis sessions. By contrast, the pharmacokinetics of buprenorphine are unchanged in haemodialysis patients, which means that there is no need for dose-reduction with this drug. Thus, in patients with reduced renal function, chronic renal insufficiency and haemodialysis, buprenorphine appears to be a safe choice when opioid treatment is initiated.

    Topics: Adult; Age Factors; Aged; Aged, 80 and over; Analgesics, Opioid; Buprenorphine; Contraindications; Humans; Kidney; Kidney Function Tests; Middle Aged; Morphine; Morphine Derivatives; Pain; Renal Dialysis; Renal Insufficiency, Chronic

2006

Other Studies

3 other study(ies) available for buprenorphine and morphine-6-glucuronide

ArticleYear
In vivo profiling of seven common opioids for antinociception, constipation and respiratory depression: no two opioids have the same profile.
    British journal of pharmacology, 2015, Volume: 172, Issue:2

    For patients experiencing inadequate analgesia and intolerable opioid-related side effects on one strong opioid analgesic, pain relief with acceptable tolerability is often achieved by rotation to a second strong opioid. These observations suggest subtle pharmacodynamic differences between opioids in vivo. This study in rats was designed to assess differences between opioids in their in vivo profiles.. Male Sprague Dawley rats were given single i.c.v. bolus doses of morphine, morphine-6-glucuronide (M6G), fentanyl, oxycodone, buprenorphine, DPDPE ([D-penicillamine(2,5) ]-enkephalin) or U69,593. Antinociception, constipation and respiratory depression were assessed using the warm water tail-flick test, the castor oil-induced diarrhoea test and whole body plethysmography respectively.. These opioid agonists produced dose-dependent antinociception, constipation and respiratory depression. For antinociception, morphine, fentanyl and oxycodone were full agonists, buprenorphine and M6G were partial agonists, whereas DPDPE and U69,593 had low potency. For constipation, M6G, fentanyl and buprenorphine were full agonists, oxycodone was a partial agonist, morphine produced a bell-shaped dose-response curve, whereas DPDPE and U69,593 were inactive. For respiratory depression, morphine, M6G, fentanyl and buprenorphine were full agonists, oxycodone was a partial agonist, whereas DPDPE and U69,593 were inactive. The respiratory depressant effects of fentanyl and oxycodone were of short duration, whereas morphine, M6G and buprenorphine evoked prolonged respiratory depression.. For the seven opioids we assessed, no two had the same profile for evoking antinociception, constipation and respiratory depression, suggesting that these effects are differentially regulated. Our findings may explain the clinical success of 'opioid rotation'.. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.

    Topics: Analgesics, Opioid; Animals; Benzeneacetamides; Buprenorphine; Castor Oil; Constipation; Diarrhea; Enkephalin, D-Penicillamine (2,5)-; Fentanyl; Hot Temperature; Male; Morphine; Morphine Derivatives; Oxycodone; Pain; Pyrrolidines; Rats, Sprague-Dawley; Respiratory Insufficiency

2015
Quantification of morphine, morphine 6-glucuronide, buprenorphine, and the enantiomers of methadone by enantioselective mass spectrometric chromatography in whole blood.
    Forensic science, medicine, and pathology, 2015, Volume: 11, Issue:2

    Deaths among drug addicts are frequently caused by intoxication with methadone and/or morphine. These drugs are often used in combination with other drugs, such as buprenorphine. In addition, methadone is generally used as a mixture of R- and S-enantiomers. To date, a method for separation and quantitation of these specific drugs has not been developed. The aim of this study was to develop a sensitive enantioselective method for quantitation of morphine, its active metabolite morphine 6-glucuronide, buprenorphine, and R- and S-methadone, in a single analytical run.. Whole blood samples were diluted with 0.5 mol/L ammonium carbonate buffer and extracted on a Bond Elut C18 solid-phase extraction column with an automatic solid-phase extraction system. Chromatographic separation was performed on a chiral alpha-1-acid glycoprotein column with an acetonitrile/ammonium acetate buffer (10 mmol/L, pH 7.0, 22:78 v/v) mobile phase. The whole blood concentrations of the drugs were quantified by mass spectrometry using their stable isotope-labeled compounds as internal standards.. The method was validated with respect to specificity, linearity, precision, limits of detection, and quantification and matrix effects. The precision (coefficient of variation) was below 15%, and the accuracy was between 90 and 115%.. This method will be useful for routine analyses in forensic laboratories where blood samples are frequently analyzed for drugs of abuse. In some cases, sudden death from methadone overdose is caused by the enantiomeric form of the methadone, which makes the enantiomer separation capability of this method important.

    Topics: Buprenorphine; Chromatography, Liquid; Forensic Toxicology; Humans; Mass Spectrometry; Methadone; Molecular Structure; Morphine; Morphine Derivatives; Narcotics; Solid Phase Extraction; Stereoisomerism; Substance-Related Disorders

2015
Characteristics and comparative severity of respiratory response to toxic doses of fentanyl, methadone, morphine, and buprenorphine in rats.
    Toxicology letters, 2009, Dec-15, Volume: 191, Issue:2-3

    Opioids are known to induce respiratory depression. We aimed to characterize in rats the effects of four opioids on arterial blood gases and plethysmography after intraperitoneal administration at 80% of their LD(50) in order to identify opioid molecule-specific patterns and classify response severity. Opioid-receptor (OR) antagonists, including intravenous 10 mg kg(-1)-naloxonazine at 5 min [mu-OR antagonist], subcutaneous 30 mg kg(-1)-naloxonazine at 24 h [mu1-OR antagonist], subcutaneous 3 mg kg(-1)-naltrindole at 45 min [delta-OR antagonist], and subcutaneous 5 mg kg(-1)-Nor-binaltorphimine at 6 h [kappa-OR antagonist] were pre-administered to test the role of each OR. Methadone, morphine, and fentanyl significantly decreased PaO(2) (P<0.001) and increased PaCO(2) (P<0.05), while buprenorphine only decreased PaO(2) (P<0.05). While all opioids significantly increased inspiratory time (T(I), P<0.001), methadone and fentanyl also increased expiratory time (T(E), P<0.05). Intravenous 10 mg kg(-1)-naloxonazine at 5 min completely reversed opioid-related effects on PaO(2) (P<0.05), PaCO(2) (P<0.001), T(I) (P<0.05), and T(E) (P<0.01) except in buprenorphine. Subcutaneous 30 mg kg(-1)-naloxonazine at 24 h completely reversed effects on PaCO(2) (P<0.01) and T(E) (P<0.001), partially reversed effects on T(I) (P<0.001), and did not reverse effects on PaO(2). Naltrindole reversed methadone-induced T(E) increases (P<0.01) but worsened fentanyl's effect on PaCO(2) (P<0.05) and T(I) (P<0.05). Nor-binaltorphimine reversed morphine- and buprenorphine-induced T(I) increases (P<0.001) but worsened methadone's effect on PaO(2) (P<0.05) and morphine (P<0.001) and buprenorphine's (P<0.01) effects on pH. In conclusion, opioid-related respiratory patterns are not uniform. Opioid-induced hypoxemia as well as increases in T(I) and T(E) are caused by mu-OR, while delta and kappa-OR roles appear limited, depending on the specific opioid. Regarding severity of opioid-induced respiratory effects at 80% of their LD(50), all drugs increased T(I). Methadone and fentanyl induced hypoxemia, hypercapnia, and T(E) increases, morphine caused both hypoxemia and hypercapnia while buprenorphine caused only hypoxemia.

    Topics: Animals; Blood Gas Analysis; Buprenorphine; Catheterization; Fentanyl; Lactic Acid; Male; Methadone; Morphine; Morphine Derivatives; Naltrexone; Narcotic Antagonists; Narcotics; Plethysmography, Whole Body; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Respiratory Insufficiency; Respiratory Mechanics

2009