bupivacaine and thioridazine

bupivacaine has been researched along with thioridazine in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19901 (25.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's3 (75.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Creveling, CR; Daly, JW; Lewandowski, GA; McNeal, ET1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Boriss, H; Braggio, S; Corbioli, S; Fontana, S; Helmdach, L; Longhi, R; Schiller, J; Vinco, F1
Artursson, P; Mateus, A; Matsson, P1

Other Studies

4 other study(ies) available for bupivacaine and thioridazine

ArticleYear
[3H]Batrachotoxinin A 20 alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs.
    Journal of medicinal chemistry, 1985, Volume: 28, Issue:3

    Topics: Adrenergic alpha-Antagonists; Adrenergic beta-Antagonists; Anesthetics, Local; Animals; Batrachotoxins; Calcium Channel Blockers; Cyclic AMP; Guinea Pigs; Histamine H1 Antagonists; In Vitro Techniques; Ion Channels; Neurotoxins; Sodium; Tranquilizing Agents; Tritium

1985
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Brain tissue binding of drugs: evaluation and validation of solid supported porcine brain membrane vesicles (TRANSIL) as a novel high-throughput method.
    Drug metabolism and disposition: the biological fate of chemicals, 2011, Volume: 39, Issue:2

    Topics: Absorption; Albumins; Animals; Brain; Brain Chemistry; Cell Membrane; Chromatography, High Pressure Liquid; Drug Evaluation, Preclinical; In Vitro Techniques; Lipids; Male; Microdialysis; Pharmaceutical Preparations; Protein Binding; Rats; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Swine; Tissue Distribution

2011
A high-throughput cell-based method to predict the unbound drug fraction in the brain.
    Journal of medicinal chemistry, 2014, Apr-10, Volume: 57, Issue:7

    Topics: Animals; Brain; Dialysis; HEK293 Cells; High-Throughput Screening Assays; Humans; Pharmaceutical Preparations; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

2014