buparlisib and rucaparib

buparlisib has been researched along with rucaparib* in 2 studies

Other Studies

2 other study(ies) available for buparlisib and rucaparib

ArticleYear
BKM120 sensitizes glioblastoma to the PARP inhibitor rucaparib by suppressing homologous recombination repair.
    Cell death & disease, 2021, 05-26, Volume: 12, Issue:6

    PARP inhibitors have been approved for the therapy of cancers with homologous recombination (HR) deficiency based on the concept of "synthetic lethality". However, glioblastoma (GBM) patients have gained little benefit from PARP inhibitors due to a lack of BRCA mutations. Herein, we demonstrated that concurrent treatment with the PARP inhibitor rucaparib and the PI3K inhibitor BKM120 showed synergetic anticancer effects on GBM U251 and U87MG cells. Mechanistically, BKM120 decreased expression of HR molecules, including RAD51 and BRCA1/2, and reduced HR repair efficiency in GBM cells, therefore increasing levels of apoptosis induced by rucaparib. Furthermore, we discovered that the two compounds complemented each other in DNA damage response and drug accumulation. Notably, in the zebrafish U87MG-RFP orthotopic xenograft model, nude mouse U87MG subcutaneous xenograft model and U87MG-Luc orthotopic xenograft model, combination showed obviously increased antitumor efficacy compared to each monotherapy. Immunohistochemical analysis of tumor tissues indicated that the combination obviously reduced expression of HR repair molecules and increased the DNA damage biomarker γ-H2AX, consistent with the in vitro results. Collectively, our findings provide new insight into combined blockade of PI3K and PARP, which might represent a promising therapeutic approach for GBM.

    Topics: Aminopyridines; Animals; Female; Glioblastoma; Humans; Indoles; Mice; Morpholines; Poly(ADP-ribose) Polymerase Inhibitors; Recombinational DNA Repair; Zebrafish

2021
Activation of the PI3K/mTOR Pathway following PARP Inhibition in Small Cell Lung Cancer.
    PloS one, 2016, Volume: 11, Issue:4

    Small cell lung cancer (SCLC) is an aggressive malignancy with limited treatment options. We previously found that PARP is overexpressed in SCLC and that targeting PARP reduces cell line and tumor growth in preclinical models. However, SCLC cell lines with PI3K/mTOR pathway activation were relatively less sensitive to PARP inhibition. In this study, we investigated the proteomic changes in PI3K/mTOR and other pathways that occur following PAPR inhibition and/or knockdown in vitro and in vivo. Using reverse-phase protein array, we found the proteins most significantly upregulated following treatment with the PARP inhibitors olaparib and rucaparib were in the PI3K/mTOR pathway (p-mTOR, p-AKT, and pS6) (p≤0.02). Furthermore, amongst the most significantly down-regulated proteins were LKB1 and its targets AMPK and TSC, which negatively regulate the PI3K pathway (p≤0.042). Following PARP knockdown in cell lines, phosphorylated mTOR, AKT and S6 were elevated and LKB1 signaling was diminished. Global ATP concentrations increased following PARP inhibition (p≤0.02) leading us to hypothesize that the observed increased PI3K/mTOR pathway activation following PARP inhibition results from decreased ATP usage and a subsequent decrease in stress response signaling via LKB1. Based on these results, we then investigated whether co-targeting with a PARP and PI3K inhibitor (BKM-120) would work better than either single agent alone. A majority of SCLC cell lines were sensitive to BKM-120 at clinically achievable doses, and cMYC expression was the strongest biomarker of response. At clinically achievable doses of talazoparib (the most potent PARP inhibitor in SCLC clinical testing) and BKM-120, an additive effect was observed in vitro. When tested in two SCLC animal models, a greater than additive interaction was seen (p≤0.008). The data presented here suggest that combining PARP and PI3K inhibitors enhances the effect of either agent alone in preclinical models of SCLC, warranting further investigation of such combinations in SCLC patients.

    Topics: Aminopyridines; AMP-Activated Protein Kinase Kinases; AMP-Activated Protein Kinases; Animals; Cell Line, Tumor; Female; Humans; Indoles; Lung Neoplasms; Mice; Mice, Inbred BALB C; Mice, Nude; Morpholines; Neoplasm Proteins; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phthalazines; Piperazines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Protein Serine-Threonine Kinases; Signal Transduction; Small Cell Lung Carcinoma; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays

2016