bumetanide and propofol

bumetanide has been researched along with propofol in 10 studies

Research

Studies (10)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's4 (40.00)29.6817
2010's6 (60.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Strassburg, CP; Tukey, RH1
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Lombardo, F; Obach, RS; Waters, NJ1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ1
Ekins, S; Williams, AJ; Xu, JJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Han, HC; Kim, WB; Kim, YB; Kim, YI; Kim, YS; Kong, MH; Lee, MK; Lim, BG; Shen, FY1
Andoh, T; Goto, T; Kamiya, Y; Kariya, T; Koyama, Y; Maruyama, K; Miyazaki, T1

Reviews

2 review(s) available for bumetanide and propofol

ArticleYear
Human UDP-glucuronosyltransferases: metabolism, expression, and disease.
    Annual review of pharmacology and toxicology, 2000, Volume: 40

    Topics: Autoimmunity; Chromosome Mapping; Glucuronides; Glucuronosyltransferase; Humans; Hyperbilirubinemia; Neoplasms; Steroids; Terminology as Topic

2000
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

8 other study(ies) available for bumetanide and propofol

ArticleYear
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
    Drug metabolism and disposition: the biological fate of chemicals, 2008, Volume: 36, Issue:7

    Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding

2008
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Developing structure-activity relationships for the prediction of hepatotoxicity.
    Chemical research in toxicology, 2010, Jul-19, Volume: 23, Issue:7

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes

2010
A predictive ligand-based Bayesian model for human drug-induced liver injury.
    Drug metabolism and disposition: the biological fate of chemicals, 2010, Volume: 38, Issue:12

    Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands

2010
Possible role of GABAergic depolarization in neocortical neurons in generating hyperexcitatory behaviors during emergence from sevoflurane anesthesia in the rat.
    ASN neuro, 2014, Apr-04, Volume: 6, Issue:2

    Topics: Age Factors; Akathisia, Drug-Induced; Anesthetics, Inhalation; Anesthetics, Intravenous; Animals; Bumetanide; gamma-Aminobutyric Acid; Membrane Potentials; Methyl Ethers; Neocortex; Neurons; Patch-Clamp Techniques; Propofol; Rats; Rats, Sprague-Dawley; Receptors, GABA-A; Sevoflurane; Sodium Potassium Chloride Symporter Inhibitors; Synaptic Potentials

2014
Bumetanide, an Inhibitor of NKCC1 (Na-K-2Cl Cotransporter Isoform 1), Enhances Propofol-Induced Loss of Righting Reflex but Not Its Immobilizing Actions in Neonatal Rats.
    PloS one, 2016, Volume: 11, Issue:10

    Topics: Animals; Animals, Newborn; Behavior, Animal; Bumetanide; Cerebral Cortex; CREB-Binding Protein; Hippocampus; Propofol; Rats; Rats, Sprague-Dawley; Reflex, Righting; Solute Carrier Family 12, Member 2

2016