bufuralol has been researched along with coumarin in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (28.57) | 18.2507 |
2000's | 4 (57.14) | 29.6817 |
2010's | 1 (14.29) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Topliss, JG; Yoshida, F | 1 |
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR | 1 |
Inoue, K; Mimura, M; Nakamura, S; Oda, H; Ohmori, S; Shimada, T; Yamazaki, H | 1 |
Shimada, T; Yamazaki, H | 1 |
Fujita, K; Kamataki, T; Nakayama, K; Nohmi, T; Tsuruma, K; Yamada, M; Yamazaki, Y | 1 |
Chiba, K; Kobayashi, K; Shimada, N; Urashima, K | 1 |
Ekman, S; Fransson-Steen, R; Hagbjörk, AL; Löfgren, S; Terelius, Y | 1 |
7 other study(ies) available for bufuralol and coumarin
Article | Year |
---|---|
QSAR model for drug human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Humans; Models, Biological; Models, Molecular; Pharmaceutical Preparations; Pharmacokinetics; Structure-Activity Relationship | 2000 |
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection | 2012 |
Cytochrome P450-dependent drug oxidation activities in liver microsomes of various animal species including rats, guinea pigs, dogs, monkeys, and humans.
Topics: Adrenergic beta-Antagonists; Aniline Compounds; Animals; Antineoplastic Agents; Benzphetamine; Carcinogens; Coumarins; Cytochrome P-450 Enzyme System; Dogs; Erythromycin; Ethanolamines; Ethylmorphine; Guinea Pigs; Humans; Macaca fascicularis; Mephenytoin; Microsomes, Liver; Nifedipine; Oxazines; Oxidation-Reduction; Phenacetin; Phenytoin; Rats; Species Specificity | 1997 |
Effects of arachidonic acid, prostaglandins, retinol, retinoic acid and cholecalciferol on xenobiotic oxidations catalysed by human cytochrome P450 enzymes.
Topics: Arachidonic Acid; Aryl Hydrocarbon Hydroxylases; Cholecalciferol; Coumarins; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP1B1; Cytochrome P-450 CYP2A6; Cytochrome P-450 CYP2B6; Cytochrome P-450 CYP2C19; Cytochrome P-450 CYP2C8; Cytochrome P-450 CYP2E1; Cytochrome P-450 CYP3A; Cytochrome P-450 CYP4A; Cytochrome P-450 Enzyme System; Ethanolamines; Humans; Isoenzymes; Lauric Acids; Microsomes, Liver; Mixed Function Oxygenases; Nifedipine; Omeprazole; Oxidation-Reduction; Oxidoreductases, N-Demethylating; Paclitaxel; Prostaglandins; Recombinant Proteins; Steroid 16-alpha-Hydroxylase; Steroid Hydroxylases; Theophylline; Tretinoin; Warfarin; Xenobiotics | 1999 |
Construction of Salmonella typhimurium YG7108 strains, each coexpressing a form of human cytochrome P450 with NADPH-cytochrome P450 reductase.
Topics: Alkylating Agents; Aryl Hydrocarbon Hydroxylases; Coumarins; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP1B1; Cytochrome P-450 CYP2C19; Cytochrome P-450 CYP2C8; Cytochrome P-450 CYP2C9; Cytochrome P-450 CYP2D6; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Diclofenac; Ethanolamines; Genetic Engineering; Humans; Midazolam; Mixed Function Oxygenases; Mutagenicity Tests; NADP; NADPH-Ferrihemoprotein Reductase; Nitrosamines; Recombinant Proteins; Salmonella typhimurium; Steroid 16-alpha-Hydroxylase; Steroid Hydroxylases | 2001 |
Substrate specificity for rat cytochrome P450 (CYP) isoforms: screening with cDNA-expressed systems of the rat.
Topics: Animals; Aryl Hydrocarbon Hydroxylases; Baculoviridae; Cells, Cultured; Chlorzoxazone; Coumarins; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Dextromethorphan; Diclofenac; DNA, Complementary; Ethanolamines; Gene Expression; Humans; Insecta; Isoenzymes; Mephenytoin; Midazolam; Nitrophenols; Pharmaceutical Preparations; Phenacetin; Rats; Substrate Specificity; Testosterone; Tumor Cells, Cultured | 2002 |
Metabolism of human cytochrome P450 marker substrates in mouse: a strain and gender comparison.
Topics: Amiodarone; Animals; Aryl Hydrocarbon Hydroxylases; Blotting, Western; Chlorzoxazone; Coumarins; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP2B6; Cytochrome P-450 Enzyme System; Dextromethorphan; Diclofenac; DNA, Complementary; Ethanolamines; Female; Humans; Kinetics; Lauric Acids; Male; Mephenytoin; Mice; Mice, Inbred C57BL; Mice, Inbred CBA; Microsomes, Liver; Mixed Function Oxygenases; NADP; Nitrophenols; Oxidoreductases, N-Demethylating; Oxygen; Paclitaxel; Phenacetin; Rats; Sex Factors; Species Specificity; Substrate Specificity; Testosterone | 2004 |