Page last updated: 2024-08-23

bromocriptine and nitrendipine

bromocriptine has been researched along with nitrendipine in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (12.50)18.2507
2000's3 (37.50)29.6817
2010's4 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
García-Mera, X; González-Díaz, H; Prado-Prado, FJ1
Bellera, CL; Bruno-Blanch, LE; Castro, EA; Duchowicz, PR; Goodarzi, M; Ortiz, EV; Pesce, G; Talevi, A1
Bakmiwewa, SM; Ball, HJ; Fatokun, AA; Hunt, NH; Payne, RJ; Tran, A1
Mehta, AK; Ticku, MK1
Fujita, T; Nishina, Y; Takano, K; Teramoto, A; Yasufuku-Takano, J1

Other Studies

8 other study(ies) available for bromocriptine and nitrendipine

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
    Journal of medicinal chemistry, 2008, Nov-13, Volume: 51, Issue:21

    Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship

2008
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics

2010
Prediction of drug intestinal absorption by new linear and non-linear QSPR.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:1

    Topics: Humans; Intestinal Absorption; Linear Models; Molecular Conformation; Nonlinear Dynamics; Permeability; Pharmaceutical Preparations; Probability; Quantitative Structure-Activity Relationship; Thermodynamics

2011
Identification of selective inhibitors of indoleamine 2,3-dioxygenase 2.
    Bioorganic & medicinal chemistry letters, 2012, Dec-15, Volume: 22, Issue:24

    Topics: Animals; Dose-Response Relationship, Drug; Enzyme Inhibitors; HEK293 Cells; Humans; Indoleamine-Pyrrole 2,3,-Dioxygenase; Mice; Models, Molecular; Molecular Structure; Structure-Activity Relationship; Substrate Specificity

2012
Role of N-methyl-D-aspartate (NMDA) receptors in experimental catalepsy in rats.
    Life sciences, 1990, Volume: 46, Issue:1

    Topics: Animals; Aspartic Acid; Baclofen; Bromocriptine; Catalepsy; Dibenzocycloheptenes; Dizocilpine Maleate; Drug Interactions; Haloperidol; Male; N-Methylaspartate; Nimodipine; Nitrendipine; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Scopolamine

1990
Mechanism of D(2) agonist-induced inhibition of GH secretion from human GH-secreting adenoma cells.
    Endocrine journal, 2005, Volume: 52, Issue:6

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Adenoma; Bromocriptine; Calcium; Calcium Channels; Dopamine Agonists; Dose-Response Relationship, Drug; Growth Hormone-Secreting Pituitary Adenoma; Human Growth Hormone; Humans; Nitrendipine; Pertussis Toxin; Receptors, Dopamine; Sodium Channels; Tumor Cells, Cultured

2005