Page last updated: 2024-08-23

bromocriptine and amiodarone

bromocriptine has been researched along with amiodarone in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (42.86)29.6817
2010's4 (57.14)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Furuya, K; Lan, LB; Sanglard, D; Schuetz, EG; Schuetz, JD; Yasuda, K1
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Andricopulo, AD; Moda, TL; Montanari, CA1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
García-Mera, X; González-Díaz, H; Prado-Prado, FJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Alberca, L; Balcazar, DE; Bellera, CL; Carrillo, C; Labriola, CA; Talevi, A1

Reviews

1 review(s) available for bromocriptine and amiodarone

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

6 other study(ies) available for bromocriptine and amiodarone

ArticleYear
Interaction of cytochrome P450 3A inhibitors with P-glycoprotein.
    The Journal of pharmacology and experimental therapeutics, 2002, Volume: 303, Issue:1

    Topics: Animals; Aryl Hydrocarbon Hydroxylases; ATP Binding Cassette Transporter, Subfamily B, Member 1; Biological Transport; Cell Line; Cells, Cultured; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Dihydroergocryptine; Drug Interactions; Enzyme Inhibitors; Fluconazole; Humans; Mice; Mice, Knockout; Microsomes, Liver; Oxidoreductases, N-Demethylating; Recombinant Proteins; Reserpine; Swine; Tissue Distribution; Transfection; Vinblastine

2002
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Hologram QSAR model for the prediction of human oral bioavailability.
    Bioorganic & medicinal chemistry, 2007, Dec-15, Volume: 15, Issue:24

    Topics: Administration, Oral; Biological Availability; Holography; Humans; Models, Biological; Models, Molecular; Molecular Structure; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship

2007
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Multi-target spectral moment QSAR versus ANN for antiparasitic drugs against different parasite species.
    Bioorganic & medicinal chemistry, 2010, Mar-15, Volume: 18, Issue:6

    Topics: Antiparasitic Agents; Molecular Structure; Neural Networks, Computer; Parasitic Diseases; Quantitative Structure-Activity Relationship; Species Specificity; Thermodynamics

2010
Application of computer-aided drug repurposing in the search of new cruzipain inhibitors: discovery of amiodarone and bromocriptine inhibitory effects.
    Journal of chemical information and modeling, 2013, Sep-23, Volume: 53, Issue:9

    Topics: Amiodarone; Bromocriptine; Computer-Aided Design; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Drug Repositioning; Protozoan Proteins; Trypanosoma cruzi

2013