bromocriptine has been researched along with adtn in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (33.33) | 18.2507 |
2000's | 2 (66.67) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
George, SR; Guan, HC; Laurier, LG; Ng, G; Niznik, HB; O'Dowd, BF; Seeman, P; Sunahara, RK; Torchia, J; Van Tol, HH | 1 |
Audinot, V; Boutin, JA; Cussac, D; Maiofiss, L; Millan, MJ; Newman-Tancredi, A | 1 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
3 other study(ies) available for bromocriptine and adtn
Article | Year |
---|---|
Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1.
Topics: Amino Acid Sequence; Animals; Base Sequence; Binding, Competitive; Blotting, Northern; Brain; Cell Line; Cell Membrane; Cloning, Molecular; Dopamine; Humans; Kinetics; Molecular Sequence Data; Molecular Weight; Oligonucleotide Probes; Rats; Receptors, Dopamine; Receptors, Dopamine D1; Receptors, Dopamine D5; RNA, Messenger; Sequence Homology, Nucleic Acid; Transfection | 1991 |
Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes.
Topics: Animals; Antiparkinson Agents; Binding Sites; Binding, Competitive; Cholinergic Antagonists; Cloning, Molecular; Cluster Analysis; Dopamine Agonists; Humans; Rats; Receptor, Muscarinic M1; Receptors, Adrenergic, alpha-1; Receptors, Adrenergic, alpha-2; Receptors, Adrenergic, beta; Receptors, Dopamine D1; Receptors, Dopamine D2; Receptors, Dopamine D3; Receptors, Histamine H1; Receptors, Muscarinic; Receptors, Neurotransmitter; Receptors, Serotonin | 2002 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |