brimonidine tartrate has been researched along with rolipram in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (50.00) | 18.2507 |
2000's | 1 (50.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Endo, T; Hirafuji, M; Kato, K; Minami, M; Ogawa, T; Satoh, Y; Suzuguchi, T | 1 |
Agey, P; Dong, CJ; Guo, Y; Hare, WA; Wheeler, L | 1 |
2 other study(ies) available for brimonidine tartrate and rolipram
Article | Year |
---|---|
[Signal transduction of serotonin release from enterochromaffin cells in mouse ileal crypts].
Topics: 4-(3-Butoxy-4-methoxybenzyl)-2-imidazolidinone; 8-Bromo Cyclic Adenosine Monophosphate; Adrenergic alpha-Agonists; Adrenergic alpha-Antagonists; Animals; Brimonidine Tartrate; Calcium; Clonidine; Enterochromaffin Cells; Ileum; In Vitro Techniques; Male; Mice; Mice, Inbred ICR; Norepinephrine; Phosphodiesterase Inhibitors; Prazosin; Pyrrolidinones; Quinazolines; Quinoxalines; Receptors, Adrenergic, alpha; Receptors, Adrenergic, beta; Rolipram; Serotonin; Signal Transduction; Yohimbine | 1998 |
Alpha2 adrenergic modulation of NMDA receptor function as a major mechanism of RGC protection in experimental glaucoma and retinal excitotoxicity.
Topics: Adrenergic alpha-2 Receptor Antagonists; Adrenergic alpha-Agonists; Animals; Brimonidine Tartrate; Calcium; Calcium Signaling; Disease Models, Animal; Excitatory Amino Acid Agonists; Glaucoma; Male; N-Methylaspartate; Neuroprotective Agents; Patch-Clamp Techniques; Phosphodiesterase Inhibitors; Quinoxalines; Rabbits; Rats; Rats, Inbred BN; Rats, Sprague-Dawley; Receptors, Adrenergic, alpha-2; Receptors, N-Methyl-D-Aspartate; Retina; Retinal Ganglion Cells; Rolipram | 2008 |