brevetoxin-b has been researched along with maitotoxin* in 5 studies
2 review(s) available for brevetoxin-b and maitotoxin
Article | Year |
---|---|
SmI2-induced cyclizations and their applications in natural product synthesis.
Since the isolation of brevetoxin-B, a red tide toxin, many bioactive marine natural products featuring synthetically challenging trans-fused polycyclic ether ring systems have been reported. We have developed SmI(2)-induced cyclization of beta-alkoxyacrylate with aldehyde, affording 2,6-syn-2,3-trans-tetrahydropyran (THP) or 2,7-syn-2,3-trans-oxepane with complete stereoselection, as a key reaction of efficient iterative and bi-directional strategies for the construction of these polycyclic ethers. This reaction is also applicable to the synthesis of 3-, 5-, and 6-methyl-THPs and 3,5-dimethyl-THP. The synthesis of 2-methyl- and 2,6-dimethyl-THPs was accomplished by means of a unique methyl insertion. Recently, the SmI(2)-induced cyclization was extended to similar reactions using beta-alkoxyvinyl sulfone and sulfoxide. Reaction of (E)- and (Z)-beta-alkoxyvinyl sulfone-aldehyde afforded 2,6-syn-2,3-trans- and 2,6-syn-2,3-cis- THPs, respectively. Reaction of (E)-beta-alkoxyvinyl (R)- and (S)-sulfoxides gave 2,6-anti-2,3-cis- and 2,6-syn-2,3-trans-THPs, respectively. Reaction of (Z)-beta-alkoxyvinyl (R)-sulfoxides gave 2,6-syn-2,3-cis-THP and an olefinic product, while that of (Z)-beta-alkoxyvinyl (S)-sulfoxide afforded a mixture of many products. These SmI(2)-induced cyclizations have been applied to the total syntheses of various natural products, including brevetoxin-B, mucocin, pyranicin, and pyragonicin. Synthetic studies on gambierol and maitotoxin are also introduced. Topics: Biological Products; Ciguatoxins; Cyclization; Ethers; Heterocyclic Compounds, 4 or More Rings; Iodides; Lactones; Marine Toxins; Oxocins; Polymers; Pyrans; Samarium | 2010 |
The continuing saga of the marine polyether biotoxins.
The unprecedented structure of the marine natural product brevetoxin B was elucidated by the research group of Nakanishi and Clardy in 1981. The ladderlike molecular architecture of this fused polyether molecule, its potent toxicity, and fascinating voltage-sensitive sodium channel based mechanism of action immediately captured the imagination of synthetic chemists. Synthetic endeavors resulted in numerous new methods and strategies for the construction of cyclic ethers, and culminated in several impressive total syntheses of this molecule and some of its equally challenging siblings. Of the marine polyethers, maitotoxin is not only the most complex and most toxic of the class, but is also the largest nonpolymeric natural product known to date. This Review begins with a brief history of the isolation of these biotoxins and highlights their biological properties and mechanism of action. Chemical syntheses are then described, with particular emphasis on new methods developed and applied to the total syntheses. The Review ends with a discussion of the, as yet unfinished, story of maitotoxin, and projects into the future of this area of research. Topics: Animals; Ciguatoxins; Cyclization; Ethers; Marine Toxins; Molecular Structure; Oxocins | 2008 |
3 other study(ies) available for brevetoxin-b and maitotoxin
Article | Year |
---|---|
Artificial ladder-shaped polyethers that inhibit maitotoxin-induced Ca2+ influx in rat glioma C6 cells.
Maitotoxin (MTX) is a ladder-shaped polyether produced by the epiphytic dinoflagellate Gambierdiscus toxicus. It is known to elicit potent toxicity against mammals and induce influx of Ca(2+) into cells. An artificial ladder-shaped polyether possessing a 6/7/6/6/7/6/6 heptacyclic ring system, which was designed for elucidating interactions with transmembrane proteins, was found to be the most potent inhibitor against MTX-induced Ca(2+) influx that has ever been reported. Topics: Animals; Calcium; Dinoflagellida; Ethers, Cyclic; Glioma; Hydrophobic and Hydrophilic Interactions; Ion Transport; Marine Toxins; Membrane Proteins; Oxocins; Rats; Tumor Cells, Cultured | 2012 |
Inhibition of maitotoxin-induced Ca2+ influx in rat glioma C6 cells by brevetoxins and synthetic fragments of maitotoxin.
45Ca2+ influx in rat glioma C6 cells induced by 0.3 nM maitotoxin (MTX) was markedly inhibited by brevetoxin A (PbTx1) and brevetoxin B (PbTx2), with EC50 values of 16 and 13 microM, respectively. This inhibition was observed immediately after addition of MTX when monitored with fura-2, which suggests that PbTx2 directly blocks the action of MTX. This blockade by PbTx2 was not affected by tetrodotoxin, which excludes the involvement of voltage-sensitive sodium channels. The depolarizing effects of these brevetoxins were also not a likely cause of this inhibition, because melittin, a channel-forming peptide, did not significantly block MTX-induced 45Ca2+ influx. Instead, this inhibition was thought to be mediated by blockade of an MTX-binding site by the brevetoxins, based on the fact that these toxins, particularly PbTx2, closely mimic the partial structure of MTX. Synthetic fragments of MTX corresponding to the hydrophilic EF-GH rings (200 microM) and LM-NO rings (500 microM) of MTX significantly reduced MTX-elicited Ca2+ influx. The observation that the effects of MTX were inhibited by structural mimics of both its hydrophobic and hydrophilic portions implies that both portions of the MTX molecule recognize its target. Topics: Animals; Calcium; Calcium Channel Blockers; Electrophysiology; Fluorescent Dyes; Fura-2; Glioma; Marine Toxins; Molecular Conformation; Oxocins; Peptide Fragments; Rats; Tumor Cells, Cultured | 1998 |
Ionspray mass spectrometry of ciguatoxin-1, maitotoxin-2 and -3, and related marine polyether toxins.
A range of marine polyether toxins from dinoflagellates were analysed by ionspray mass spectrometry. Ciguatoxin-1 ([M+H]+ m/z = 1,111.8) purified from several fish species yielded singly charged ions corresponding to the parent ion, sodium and H2O adducts and ions for the loss of up to five H2O molecules. Ciguatoxin-1 was detected to 1 ng; however, interference from fish lipids precluded direct detection of ciguatoxin-1 in crude extracts from fish flesh spiked with ciguatoxin-1 at a level equivalent to 1.5 ng ciguatoxin-1/g of extracted flesh. Maitotoxin-2 yielded doubly and triply charged ions for sodium and potassium salts and likely possessed only one sulphate ester (M(r) = 3,298 for the mono-sodium salt). Maitotoxin-3, a recently isolated small maitotoxin, yielded singly charged ions including ions for the loss of one sulphate and up to four H2O molecules. Maitotoxin-3 is proposed to be a polyether compound possessing two sulphate esters (M(r) = 1,060.5 for the disodium salt). Brevetoxin-A ([M+H]+ m/z = 867.5) and brevetoxin-B ([M+H]+ m/z = 895.5) yielded singly charged ions corresponding to the parent ion, Na+ adducts and the loss of up to four H2O molecules. Okadaic acid ([M+H]+ m/z = 805.5) yielded singly charged ions corresponding to the parent ion and ions for the loss of up to three H2O molecules. A signal for M + 18 Da species that may represent [M+NH4]+ was observed for ciguatoxin-1, brevetoxin-A and -B, and okadaic acid. For all polyethers examined, the orifice potential influenced the relative intensity of the ions detected in a predictable manner.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Carcinogens; Chromatography, High Pressure Liquid; Ciguatoxins; Dinoflagellida; Eels; Ethers, Cyclic; Fishes; Marine Toxins; Mass Spectrometry; Okadaic Acid; Oxocins; Spectrometry, Mass, Fast Atom Bombardment | 1994 |