brevetoxin has been researched along with thiobutabarbital* in 4 studies
1 review(s) available for brevetoxin and thiobutabarbital
Article | Year |
---|---|
Natural and derivative brevetoxins: historical background, multiplicity, and effects.
Symptoms consistent with inhalation toxicity have long been associated with Florida red tides, and various causal agents have been proposed. Research since 1981 has centered on a group of naturally occurring trans-fused cyclic polyether compounds called brevetoxins that are produced by a marine dinoflagellate known as Karenia brevis. Numerous individual brevetoxins have been identified from cultures as well as from natural bloom events. A spectrum of brevetoxin derivatives produced by chemical modification of the natural toxins has been prepared to examine the effects of functional group modification on physiologic activity. Certain structural features of natural and synthetic derivatives of brevetoxin appear to ascribe specific physiologic consequences to each toxin. Differential physiologic effects have been documented with many of the natural toxins and derivatives, reinforcing the hypothesis that metabolism or modification of toxin structures modulates both the specific toxicity (lethality on a per milligram basis) and potentially the molecular mechanism(s) of action. A series of naturally occurring fused-ring polyether compounds with fewer rings than brevetoxin, known as brevenals, exhibit antagonistic properties and counteract the effects of the brevetoxins in neuronal and pulmonary model systems. Taken together, the inhalation toxicity of Florida red tides would appear to depend on the amount of each toxin present, as well as on the spectrum of molecular activities elicited by each toxin. Toxicity in a bloom is diminished by the amount brevenal present. Topics: Animals; Dinoflagellida; Eutrophication; Florida; Humans; Inhalation Exposure; Marine Toxins; Oxocins; Public Health; Respiratory Tract Diseases; Risk Assessment; Structure-Activity Relationship; Thiopental | 2005 |
3 other study(ies) available for brevetoxin and thiobutabarbital
Article | Year |
---|---|
The inhibition of CHO-K1-BH4 cell proliferation and induction of chromosomal aberrations by brevetoxins in vitro.
Brevetoxins (PbTxs) are highly potent trans-syn polyether neurotoxins produced during blooms of several species of marine dinoflagellates, most notably Karenia brevis. These neurotoxins act on voltage-sensitive sodium channels prolonging the active state. During red tides, the commercial fishing and tourism industries experience millions of dollars of lost revenue. Human consumption of shellfish contaminated with PbTxs results in neurotoxic shellfish poisoning (NSP). Additionally, blooms of K. brevis are potentially responsible for adverse human health effects such as respiratory irritation and airway constriction in coastal residents. There is little information regarding the full range of potential toxic effects caused by PbTxs. Recent evidence suggests that PbTxs are genotoxic substances. The purpose of this study was to determine if PbTxs could induce chromosomal aberrations and inhibit cellular proliferation in CHO-K1-BH4 cells, and if so, could the damage be negated or reduced by the PbTx antagonist brevenal. Results from the chromosomal aberrations assay demonstrated that PbTxs are potent inducers of CHO-K1-BH4 chromosome damage. Results from the inhibition of cellular proliferation assays demonstrated that PbTxs inhibit the ability of CHO-K1-BH4 cells to proliferate, an effect which can be reduced with brevenal. Topics: Animals; Cell Proliferation; CHO Cells; Chromosome Aberrations; Cricetinae; Dinoflagellida; Marine Toxins; Mitomycin; Mutagenicity Tests; Nucleic Acid Synthesis Inhibitors; Oxocins; Thiopental | 2006 |
The effect of brevenal on brevetoxin-induced DNA damage in human lymphocytes.
Brevenal is a nontoxic short-chain trans-syn polyether that competes with brevetoxin (PbTx) for the active site on voltage-sensitive sodium channels. The PbTxs are highly potent polyether toxins produced during blooms of several species of marine dinoflagellates, most notably Karenia brevis. Blooms of K. brevis have been associated with massive fish kills, marine mammal poisoning, and are potentially responsible for adverse human health effects such as respiratory irritation and airway constriction in beach-goers. Additionally, the consumption of shellfish contaminated with PbTxs results in neurotoxic shellfish poisoning (NSP). The purpose of the present study was to determine whether PbTx could induce DNA damage in a human cell type, the lymphocyte, and if so, whether the damage could be antagonized or ameliorated by brevenal, a brevetoxin antagonist. The DNA damage may occur through both endogenous and exogenous physiological and pathophysiological processes. Unrepaired or erroneously repaired DNA damage may result in gene mutation, chromosome aberration, and modulation of gene regulation, which have been associated with immunotoxicity and carcinogenesis. A single-cell gel electrophoresis assay, or comet assay, was used to determine and compare DNA damage following various treatments. The data were expressed as tail moments, which is the percentage of DNA in the tail multiplied by the length between the center of the head and center of the tail (in arbitrary units). The negative control tail moment was 29.2 (SE=+/-0.9), whereas the positive control (hydrogen peroxide) was 72.1 (1.5) and solvent (ethanol) was 24.2 (2.1). The PbTx-2 (from Sigma, St. Louis, MO, USA), 10(-8) M was 41.3 (3.6), PbTx-9 (Sigma), 10(-8) M was 57.0 (5.3), PbTx-2 (from University of North Carolina at Wilmington, UNCW), 10(-8) M was 49.4 (9.9), and PbTx-3 (UNCW), 10(-8) M was 64.0 (6.4). 1.0 microg/ml brevenal applied 1 h before the PbTxs protected the lymphocytes from DNA damage; PbTx-2 (Sigma), 31.3 (2.1); PbTx-9 (Sigma), 35.5 (2.9); PbTx-2 (UNCW), 33.9 (1.4); PbTx-3 (UNCW), 34.9 (1.25). The tail moment for 1.0 mug/ml brevenal alone was 30.8 (2.6). The results indicate that extensive genotoxic damage is induced by PbTx-2 and 9 (Sigma), and PbTx-2 and 3 (UNCW) in normal human lymphocytes, which is fully antagonized by brevenal. This suggests that the immune systems of individuals exposed to PbTx during harmful algal bloom (HAB) events may be at risk. Topics: Animals; Cells, Cultured; Dinoflagellida; DNA Damage; Humans; Lymphocytes; Marine Toxins; Neurotoxins; Oxocins; Thiopental | 2005 |
Brevenal is a natural inhibitor of brevetoxin action in sodium channel receptor binding assays.
1. Florida red tides produce profound neurotoxicity that is evidenced by massive fish kills, neurotoxic shellfish poisoning, and respiratory distress. Red tides vary in potency, potency that is not totally governed by toxin concentration. The purpose of the study was to understand the variable potency of red tides by evaluating the potential for other natural pharmacological agents which could modulate or otherwise reduce the potency of these lethal environmental events. 2. A synaptosome binding preparation with 3-fold higher specific brevetoxin binding was developed to detect small changes in toxin binding in the presence of potential antagonists. Rodent brain labeled in vitro with tritiated brevetoxin shows high specific binding in the cerebellum as evidenced by autoradiography. Synaptosome binding assays employing cerebellum-derived synaptosomes illustrate 3-fold increased specific binding. 3. A new polyether natural product from Florida's red tide dinoflagellate Karenia brevis, has been isolated and characterized. Brevenal, as the nontoxic natural product is known, competes with tritiated brevetoxin for site 5 associated with the voltage-sensitive sodium channel (VSSC). Brevenal displacement of specific brevetoxin binding is purely competitive in nature. 4. Brevenal, obtained from either laboratory cultures or field collections during a red tide, protects fish from the neurotoxic effects of brevetoxin exposure. 5. Brevenal may serve as a model compound for the development of therapeutics to prevent or reverse intoxication in red tide exposures. Topics: Animals; Binding, Competitive; Biological Assay; Cerebellum; Cyprinodontiformes; Dinoflagellida; Ethers; Male; Marine Toxins; Mice; Molecular Structure; Oxocins; Polymers; Presynaptic Terminals; Radioligand Assay; Sodium Channel Blockers; Sodium Channels; Synaptic Transmission; Synaptosomes; Thiopental | 2004 |