bq-123 has been researched along with estrone-sulfate* in 2 studies
2 other study(ies) available for bq-123 and estrone-sulfate
Article | Year |
---|---|
Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter.
Transport of various amphipathic organic compounds is mediated by organic anion transporting polypeptides (OATPs in humans, Oatps in rodents), which belong to the solute carrier family 21A (SLC21A/Slc21a). Several of these transporters exhibit a broad and overlapping substrate specificity and are expressed in a variety of different tissues. We have isolated and functionally characterized OATP-F (SLC21A14), a novel member of the OATP family. The cDNA (3059 bp) contains an open reading frame of 2136 bp encoding a protein of 712 amino acids. Its gene containing 15 exons is located on chromosome 12p12. OATP-F exhibits 47-48% amino acid identity with OATP-A, OATP-C, and OATP8, the genes of which are clustered on chromosome 12p12. OATP-F is predominantly expressed in multiple brain regions and Leydig cells of the testis. OATP-F mediates high affinity transport of T(4) and reverse T(3) with apparent K(m) values of approximately 90 nM and 128 nM, respectively. Substrates less well transported by OATP-F include T(3), bromosulfophthalein, estrone-3-sulfate, and estradiol-17beta-glucuronide. Furthermore, OATP-F-mediated T(4) uptake could be cis-inhibited by L-T(4) and D-T(4), but not by 3,5-diiodothyronine, indicating that T(4) transport is not stereospecific, but that 3',5'-iodination is important for efficient transport by OATP-F. Thus, in contrast to most other family members, OATP-F has a more selective substrate preference and may play an important role in the disposition of thyroid hormones in brain and testis. Topics: Amino Acid Sequence; Animals; Brain; CHO Cells; Chromosomes, Human, Pair 12; Cloning, Molecular; Cricetinae; Diiodothyronines; Estradiol; Estrone; Female; Humans; Leydig Cells; Male; Membrane Proteins; Molecular Sequence Data; Oocytes; Organ Specificity; Organic Anion Transporters; Sequence Homology, Amino Acid; Sulfobromophthalein; Testis; Thyroxine; Triiodothyronine; Xenopus | 2002 |
Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver.
Hepatic uptake of cholephilic organic compounds is mediated by members of the organic anion-transporting polypeptide (OATP) family. We aimed to characterize the novel OATP-B with respect to tissue distribution and hepatocellular localization and to compare its substrate specificity with those of OATP-A, OATP-C, and OATP8.. Tissue distribution and hepatocellular localization of OATP-B were analyzed by Northern blotting and immunofluorescence, respectively. Transport of 16 substrates was measured for each individual human OATP in complementary RNA-injected Xenopus laevis oocytes.. Expression of OATP-B was most abundant in human liver, where it is localized at the basolateral membrane of hepatocytes. OATP-B, OATP-C, and OATP8 mediated high-affinity uptake of bromosulphophthalein (K(m), approximately 0.7, 0.3, and 0.4 micromol/L, respectively). OATP-B also transported estrone-3-sulfate but not bile salts. Although OATP-A, OATP-C, and OATP8 exhibit broad overlapping substrate specificities, OATP8 was unique in transporting digoxin and exhibited especially high transport activities for the anionic cyclic peptides [D-penicillamine(2,5)]enkephalin (DPDPE; opioid-receptor agonist) and BQ-123 (endothelin-receptor antagonist).. OATP-B is the third bromosulphophthalein uptake system localized at the basolateral membrane of human hepatocytes. OATP-B, OATP-C, and OATP8 account for the major part of sodium-independent bile salt, organic anion, and drug clearance of human liver. Topics: Animals; Anion Transport Proteins; Anions; Antibodies; Arylsulfatases; Biological Transport; Blotting, Northern; Carrier Proteins; Coloring Agents; DNA, Complementary; Estrone; Gene Expression; Humans; Liver; Molecular Weight; Oocytes; Rabbits; RNA, Messenger; Steryl-Sulfatase; Sulfobromophthalein; Xenopus laevis | 2001 |