bortezomib has been researched along with carfilzomib* in 3 studies
1 review(s) available for bortezomib and carfilzomib
Article | Year |
---|---|
Immunoproteasome-selective inhibitors: An overview of recent developments as potential drugs for hematologic malignancies and autoimmune diseases.
The immunoproteasome, a specialized form of proteasome, is mainly expressed in lymphocytes and monocytes of jawed vertebrates and responsible for the generation of antigenic peptides for cell-mediated immunity. Overexpression of immunoproteasome have been detected in a wide range of diseases including malignancies, autoimmune and inflammatory diseases. Following the successful approval of constitutive proteasome inhibitors bortezomib, carfilzomib and Ixazomib, and with the clarification of immunoproteasome crystal structure and functions, a variety of immunoproteasome inhibitors were discovered or rationally developed. Not only the inhibitory activities, the selectivities for immunoproteasome over constitutive proteasome are essential for the clinical potential of these analogues, which has been validated by the clinical evaluation of immunoproteasome-selective inhibitor KZR-616 for the treatment of systemic lupus erythematosus. In this review, structure, function as well as the current developments of various inhibitors against immunoproteasome are going to be summarized, which help to fully understand the target for drug discovery. Topics: Animals; Antineoplastic Agents; Autoimmune Diseases; Boron Compounds; Bortezomib; Glycine; Hematologic Neoplasms; Humans; Oligopeptides; Proteasome Endopeptidase Complex; Proteasome Inhibitors | 2019 |
2 other study(ies) available for bortezomib and carfilzomib
Article | Year |
---|---|
Development of Novel Epoxyketone-Based Proteasome Inhibitors as a Strategy To Overcome Cancer Resistance to Carfilzomib and Bortezomib.
Over the past 15 years, proteasome inhibitors (PIs), namely bortezomib, carfilzomib (Cfz) and ixazomib, have significantly improved the overall survival and quality-of-life for multiple myeloma (MM) patients. However, a significant portion of MM patients do not respond to PI therapies. Drug resistance is present either de novo or acquired after prolonged therapy through mechanisms that remain poorly defined. The lack of a clear understanding of clinical PI resistance has hampered the development of next-generation PI drugs to treat MM patients who no longer respond to currently available therapies. Here, we designed and synthesized novel epoxyketone-based PIs by structural modifications at the P1' site. We show that a Cfz analog, 9, harboring a hydroxyl substituent at its P1' position was highly cytotoxic against cancer cell lines displaying de novo or acquired resistance to Cfz. These results suggest that peptide epoxyketones incorporating P1'-targeting moieties may have the potential to bypass resistance mechanisms associated with Cfz and to provide additional clinical options for patients resistant to Cfz. Topics: Animals; Antineoplastic Agents; Bortezomib; Cell Line, Tumor; Drug Resistance, Neoplasm; Drug Stability; Epoxy Compounds; Humans; Ketones; Male; Molecular Docking Simulation; Oligopeptides; Peptides; Proteasome Inhibitors; Rats, Sprague-Dawley | 2019 |
Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047).
Proteasome inhibition has been validated as a therapeutic modality in the treatment of multiple myeloma and non-Hodgkin's lymphoma. Carfilzomib, an epoxyketone currently undergoing clinical trials in malignant diseases, is a highly selective inhibitor of the chymotrypsin-like (CT-L) activity of the proteasome. A chemistry effort was initiated to discover orally bioavailable analogues of carfilzomib, which would have potential for improved dosing flexibility and patient convenience over intravenously administered agents. The lead compound, 2-Me-5-thiazole-Ser(OMe)-Ser(OMe)-Phe-ketoepoxide (58) (PR-047), selectively inhibited CT-L activity of both the constitutive proteasome (beta5) and immunoproteasome (LMP7) and demonstrated an absolute bioavailability of up to 39% in rodents and dogs. It was well tolerated with repeated oral administration at doses resulting in >80% proteasome inhibition in most tissues and elicited an antitumor response equivalent to intravenously administered carfilzomib in multiple human tumor xenograft and mouse syngeneic models. The favorable pharmacologic profile supports its further development for the treatment of malignant diseases. Topics: Administration, Oral; Animals; Antineoplastic Agents; Biological Availability; Cell Line; Dipeptides; Drug Design; Enzyme Inhibitors; Humans; Kinetics; Mice; Oligopeptides; Proteasome Inhibitors; Structure-Activity Relationship; Substrate Specificity; Thiazoles | 2009 |