boron-oxide has been researched along with germanium-oxide* in 2 studies
2 other study(ies) available for boron-oxide and germanium-oxide
Article | Year |
---|---|
Lithium-Ion Mobility in Quaternary Boro-Germano-Phosphate Glasses.
Effect of the structural changes, electrical conductivity, and dielectric properties on the addition of a third glass-former, GeO2, to the borophosphate glasses, 40Li2O-10B2O3-(50 - x)P2O5-xGeO2, x = 0-25 mol %, has been studied. Introduction of GeO2 causes the structural modifications in the glass network, which results in a continuous increase in electrical conductivity. Glasses with low GeO2 content, up to 10 mol %, show a rapid increase in dc conductivity as a result of the interlinkage of slightly depolymerized phosphate chains and negatively charged [GeO4](-) units, which enhances the migration of Li(+) ions. The Li(+) ions compensate these delocalized charges connecting both phosphate and germanium units, which results in reduction of both bond effectiveness and binding energy of Li(+) ions and therefore enables their hop to the next charge-compensating site. For higher GeO2 content, the dc conductivity increases slightly, tending to approach a maximum in Li(+) ion mobility caused by the incorporation of GeO2 units into phosphate network combined with conversion of GeO4 to GeO6 units. The strong cross-linkage of germanium and phosphate units creates heteroatomic P-O-Ge bonds responsible for more effectively trapped Li(+) ions. A close correspondence between dielectric and conductivity parameters at high frequencies indicates that the increase in conductivity indeed is controlled by the modification of structure as a function of GeO2 addition. Topics: Boron Compounds; Electric Conductivity; Germanium; Glass; Ions; Lithium; Magnetic Resonance Spectroscopy; Phosphates; Spectrum Analysis, Raman; Temperature; Transition Temperature | 2016 |
Microscopically based calculations of the free energy barrier and dynamic length scale in supercooled liquids: the comparative role of configurational entropy and elasticity.
We compute the temperature-dependent barrier for α-relaxations in several liquids, without adjustable parameters, using experimentally determined elastic, structural, and calorimetric data. We employ the random first order transition (RFOT) theory, in which relaxation occurs via activated reconfigurations between distinct, aperiodic minima of the free energy. Two different approximations for the mismatch penalty between the distinct aperiodic states are compared, one due to Xia and Wolynes (Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 2990), which scales universally with temperature as for hard spheres, and one due to Rabochiy and Lubchenko (J. Chem. Phys. 2013, 138, 12A534), which employs measured elastic and structural data for individual substances. The agreement between the predictions and experiment is satisfactory, given the uncertainty in the measured experimental inputs. The explicitly computed barriers are used to calculate the glass transition temperature for each substance--a kinetic quantity--from the static input data alone. The temperature dependence of both the elastic and structural constants enters the temperature dependence of the barrier over an extended range to a degree that varies from substance to substance. The lowering of the configurational entropy, however, seems to be the dominant contributor to the barrier increase near the laboratory glass transition, consistent with previous experimental tests of the RFOT theory using the XW approximation. In addition, we compute the temperature dependence of the dynamical correlation length, also without using adjustable parameters. These agree well with experimental estimates obtained using the Berthier et al. (Science 2005, 310, 1797) procedure. Finally, we find the temperature dependence of the complexity of a rearranging region is consistent with the picture based on the RFOT theory but is in conflict with the assumptions of the Adam-Gibbs and "shoving" scenarios for the viscous slowing down in supercooled liquids. Topics: Boron Compounds; Chlorides; Elasticity; Germanium; Glycerol; Kinetics; Microscopy; Organophosphorus Compounds; Silicon Dioxide; Thermodynamics; Toluene; Toluidines; Zinc Compounds | 2013 |