boron has been researched along with leucomalachite-green* in 1 studies
1 other study(ies) available for boron and leucomalachite-green
Article | Year |
---|---|
Cost-effective flow cell for the determination of malachite green and leucomalachite green at a boron-doped diamond thin-film electrode.
An electrooxidation and a cost-effective flow-based analysis of malachite green (MG) and leucomalachite green (LMG) were investigated at a boron-doped diamond thin-film (BDD) electrode. Cyclic voltammetry as a function of the pH of the supporting electrolyte solution was studied. Comparison experiments were performed with a glassy carbon electrode. A well-defined cyclic voltammogram, providing the highest peak current, was obtained when using phosphate buffer at pH 2. The potential sweep-rate dependence of MG and LMG oxidation (peak currents for 1 mM MG and LMG linearly proportional to v 1/2, within the range of 0.01 to 0.3 V/s) indicates that the oxidation current is a diffusion-controlled process on the BDD surface. In addition, hydrodynamic voltammetry and amperometric detection using the BDD electrode combined with a flow injection analysis system was also studied. A homemade flow cell was used, and the results were compared with a commercial flow cell. A detection potential of 0.85 V was selected when using a commercial flow cell, at which MG and LMG exhibited the highest signal-to-background ratios. For the homemade flow cell, a detection potential of 1.1 V was chosen because MG and LMG exhibited a steady response. The flow analysis results showed linear concentration ranges of 1-100 microM and 4-80 microM for MG and LMG, respectively. The detection limit for both compounds was 50 nM. Topics: Aniline Compounds; Boron; Costs and Cost Analysis; Diamond; Electrochemistry; Electrodes; Flow Injection Analysis; Molecular Structure; Oxidation-Reduction; Rosaniline Dyes; Sensitivity and Specificity | 2006 |