boron and iridium-oxide

boron has been researched along with iridium-oxide* in 5 studies

Reviews

1 review(s) available for boron and iridium-oxide

ArticleYear
Biocompatible reference electrodes to enhance chronic electrochemical signal fidelity in vivo.
    Analytical and bioanalytical chemistry, 2021, Volume: 413, Issue:27

    In vivo electrochemistry is a vital tool of neuroscience that allows for the detection, identification, and quantification of neurotransmitters, their metabolites, and other important analytes. One important goal of in vivo electrochemistry is a better understanding of progressive neurological disorders (e.g., Parkinson's disease). A complete understanding of such disorders can only be achieved through a combination of acute (i.e., minutes to hours) and chronic (i.e., days or longer) experimentation. Chronic studies are more challenging because they require prolonged implantation of electrodes, which elicits an immune response, leading to glial encapsulation of the electrodes and altered electrode performance (i.e., biofouling). Biofouling leads to increased electrode impedance and reference electrode polarization, both of which diminish the selectivity and sensitivity of in vivo electrochemical measurements. The increased impedance factor has been successfully mitigated previously with the use of a counter electrode, but the challenge of reference electrode polarization remains. The commonly used Ag/AgCl reference electrode lacks the long-term potential stability in vivo required for chronic measurements. In addition, the cytotoxicity of Ag/AgCl adversely affects animal experimentation and prohibits implantation in humans, hindering translational research progress. Thus, a move toward biocompatible reference electrodes with superior chronic potential stability is necessary. Two qualifying materials, iridium oxide and boron-doped diamond, are introduced and discussed in terms of their electrochemical properties, biocompatibilities, fabrication methods, and applications. In vivo electrochemistry continues to advance toward more chronic experimentation in both animal models and humans, necessitating the utilization of biocompatible reference electrodes that should provide superior potential stability and allow for unprecedented chronic signal fidelity when used with a counter electrode for impedance mitigation.

    Topics: Alloys; Animals; Biocompatible Materials; Biofouling; Boron; Brain; Diamond; Electrochemical Techniques; Electrodes; Electrodes, Implanted; Electrophysiological Phenomena; Humans; Iridium; Metals

2021

Other Studies

4 other study(ies) available for boron and iridium-oxide

ArticleYear
Formation of Chlorination Byproducts and Their Emission Pathways in Chlorine Mediated Electro-Oxidation of Urine on Active and Nonactive Type Anodes.
    Environmental science & technology, 2015, Sep-15, Volume: 49, Issue:18

    Chlorination byproducts (CBPs) are harmful to human health and the environment. Their formation in chlorine mediated electro-oxidation is a concern for electrochemical urine treatment. We investigated the formation of chlorate, perchlorate, and organic chlorination byproducts (OCBPs) during galvanostatic (10, 15, 20 mA · cm(-2)) electro-oxidation of urine on boron-doped diamond (BDD) and thermally decomposed iridium oxide film (TDIROF) anodes. In the beginning of the batch experiments, the production of perchlorate was prevented by competing active chlorine and chlorate formation as well as by direct oxidation of organic substances. Perchlorate was only formed at higher specific charges (>17 Ah · L(-1) on BDD and >29 Ah · L(-1) on TDIROF) resulting in chlorate and perchlorate being the dominant CBPs (>90% of initial chloride). BDD produced mainly short chained OCBPs (dichloromethane, trichloromethane, and tetrachloromethane), whereas longer chained OCBPs (1,2-dichloropropane and 1,2-dichloroethane) were more frequently found on TDIROF. The OCBPs were primarily eliminated by electrochemical stripping: On BDD, this pathway accounted for 40% (dichloromethane) to 100% (tetrachloromethane) and on TDIROF for 90% (1,2-dichloroethane) to 100% (trichloromethane) of what was produced. A post-treatment of the liquid as well as the gas phase should be foreseen if CBP formation cannot be prevented by eliminating chloride or organic substances in a pretreatment.

    Topics: Boron; Chlorates; Chlorides; Chlorine; Electrochemical Techniques; Electrodes; Ethylene Dichlorides; Halogenation; Humans; Hydrocarbons, Chlorinated; Iridium; Oxidation-Reduction; Perchlorates; Urine

2015
Relationship between anode material, supporting electrolyte and current density during electrochemical degradation of organic compounds in water.
    Journal of hazardous materials, 2014, Aug-15, Volume: 278

    Taking crystal violet (CV) dye as pollutant model, the electrode, electrolyte and current density (i) relationship for electro-degrading organic molecules is discussed. Boron-doped diamond (BDD) or Iridium dioxide (IrO2) used as anode materials were tested with Na2SO4 or NaCl as electrolytes. CV degradation and generated oxidants showed that degradation pathways and efficiency are strongly linked to the current density-electrode-electrolyte interaction. With BDD, the degradation pathway depends on i: If ii(lim), generated oxidants play a major role in the CV elimination. When IrO2 was used, CV removal was not dependent on i, but on the electrolyte. Pollutant degradation in Na2SO4 on IrO2 seems to occur via IrO3; however, in the presence of NaCl, degradation was dependent on the chlorinated oxidative species generated. In terms of efficiency, the Na2SO4 electrolyte showed better results than NaCl when BDD anodes were employed. On the contrary, NaCl was superior when combined with IrO2. Thus, the IrO2/Cl(-) and BDD/SO4(2-) systems were better at removing the pollutant, being the former the most effective. On the other hand, pollutant degradation with the BDD/SO4(2-) and IrO2/Cl(-) systems is favored at low and high current densities, respectively.

    Topics: Boron; Chlorides; Coloring Agents; Diamond; Electrochemistry; Electrodes; Gentian Violet; Iridium; Sulfates; Waste Disposal, Fluid; Water Pollutants, Chemical

2014
Simultaneous detection of pH changes and histamine release from oxyntic glands in isolated stomach.
    Analytical chemistry, 2008, Nov-15, Volume: 80, Issue:22

    Real-time simultaneous detection of changes in pH and levels of histamine over the oxyntic glands of guinea pig stomach have been investigated. An iridium oxide pH microelectrode was used in a potentiometric mode to record the pH decrease associated with acid secretion when the sensor approached the isolated tissue. A boron-doped diamond (BDD) microelectrode was used in an amperometric mode to detect histamine when the electrode was placed over the tissue. Both sensors provided stable and reproducible responses that were qualitatively consistent with the signaling mechanism for acid secretion at the stomach. Simultaneous measurements in the presence of pharmacological treatments produced significant variations in the signals obtained by both sensors. As the H2 receptor antagonist cimetidine was perfused to the tissue, histamine levels increased that produced an increase in the signal of the BDD electrode whereas the pH sensor recorded a decrease in acid secretion as expected. Addition of acetylcholine (ACh) stimulated additional acid secretion detected with the pH microelectrode whereas the BDD sensor recorded the histamine levels decreasing significantly. This result shows that the primary influence of ACh is directly on the parietal cell receptors rather then the ECL cell receptors of the oxyntic glands. These results highlight the power of this simultaneous detection technique in the monitoring and diagnosis of physiological significant signaling mechanisms and pathways.

    Topics: Acetylcholine; Animals; Boron; Chemistry Techniques, Analytical; Diamond; Gastric Acid; Gastric Acidity Determination; Gastric Mucosa; Guinea Pigs; Histamine; Histamine Release; Hydrogen-Ion Concentration; Iridium; Male; Microelectrodes; Neurons; Stomach; Time Factors

2008
Studies on electrochemical treatment of wastewater contaminated with organotin compounds.
    Journal of hazardous materials, 2007, Jul-31, Volume: 146, Issue:3

    Different anode materials were tested to evaluate their suitability to eliminate organotin compounds electrochemically from shipyard process waters. The capacity of two types of anode materials was investigated: niobium coated with boron-doped diamond (BDD) and titanium coated with iridium dioxide, (Ti/IrO(2)). The aim of this work was to characterize the performance of the process using both anode materials at different current densities, and also to evaluate the generation of by-products. A further objective of this work was to evaluate if operating at low potentials with BDD anodes (to avoid the generation of elemental oxygen) the consumption of energy for degradation of pollutants could be minimized. The processes were tested on synthetic and real shipyard water containing approximately 25,000ngL(-1) of tributyltin (TBT) (as Sn) and 5,000ngL(-1) dibutyltin. The range of current densities was between 6 and 70mAcm(-2). The results showed that electrochemical treatment is suitable to eliminate organotins down to very low concentrations following a stepwise debutylation mechanism. Both anode materials exhibited a similar performance with energy consumption in the range of 7-10kWhm(-3) in order to decrease organotins down to 100ngL(-1) (as Sn). For the water composition tested, BDD did not outperform Ti/IrO(2) as initially expected, most probably because organotins were not only oxidized by OH, but also by active chlorine compounds generated by the oxidation of chloride present in the wastewater (1.6gL(-1), Cl(-)) with both anode materials. It was also found that the residual oxidants remaining in the treated effluent had to be eliminated if the water is to be discharged safely in the aquatic environment.

    Topics: Adsorption; Boron; Carbon; Diamond; Electrodes; Electrolysis; Industrial Waste; Iridium; Organotin Compounds; Oxidation-Reduction; Ships; Titanium; Waste Disposal, Fluid; Water Pollutants, Chemical

2007