boron and dipyrromethane

boron has been researched along with dipyrromethane* in 3 studies

Reviews

1 review(s) available for boron and dipyrromethane

ArticleYear
BODIPY as a Multifunctional Theranostic Reagent in Biomedicine: Self-Assembly, Properties, and Applications.
    Advanced materials (Deerfield Beach, Fla.), 2023, Volume: 35, Issue:18

    The use of boron dipyrromethene (BODIPY) in biomedicine is reviewed. To open, its synthesis and regulatory strategies are summarized, and inspiring cutting-edge work in post-functionalization strategies is highlighted. A brief overview of assembly model of BODIPY is then provided: BODIPY is introduced as a promising building block for the formation of single- and multicomponent self-assembled systems, including nanostructures suitable for aqueous environments, thereby showing the great development potential of supramolecular assembly in biomedicine applications. The frontier progress of BODIPY in biomedical application is thereafter described, supported by examples of the frontiers of biomedical applications of BODIPY-containing smart materials: it mainly involves the application of materials based on BODIPY building blocks and their assemblies in fluorescence bioimaging, photoacoustic imaging, disease treatment including photodynamic therapy, photothermal therapy, and immunotherapy. Lastly, not only the current status of the BODIPY family in the biomedical field but also the challenges worth considering are summarized. At the same time, insights into the future development prospects of biomedically applicable BODIPY are provided.

    Topics: Boron; Indicators and Reagents; Nanoparticles; Precision Medicine

2023

Other Studies

2 other study(ies) available for boron and dipyrromethane

ArticleYear
Novel B,O-chelated fluorescent probe for nitric oxide imaging in Raw 264.7 macrophages and onion tissues.
    Analytica chimica acta, 2013, Oct-24, Volume: 800

    A novel fluorescent probe based on B,O-chelated dipyrromethene chromophore in far-visible and near-infrared spectral region (600-900 nm), boron chelated 8-(3,4-diaminophenyl)-3,5-bis(2-hydroxyphenyl)-4-bora-3a,4a-diaza-s-indancene (BOPB), has been first developed for nitric oxide (NO) imaging. BOPB, a turn-on fluorescent probe, can react with NO rapidly under physiological condition. The reaction product of BOPB with NO, BOPB-T, emits bright red fluorescence at 643 nm when excited at 622 nm. Meanwhile, BOPB-T displays high fluorescent quantum yield of 0.21 and good photostability. The selectivity for NO over other reactive oxygen/nitrogen species and ascorbic acid has been investigated and BOPB has good specificity for the detection of NO. MTT assay shows that the toxicity of BOPB (below 10 μM) to living cells can be neglected. Based on these investigations, BOPB has been used for NO imaging in Raw 264.7 cells and onion tissues. Meanwhile, mechanical injury to onion tissues results in a brighter fluorescence around the wound, which indicates that more NO has been produced in plant tissues in response to external stimuli. Our studies illustrate that BOPB has advantages of high sensitivity, low background interference and little photo damage on fluorescence imaging of NO.

    Topics: Animals; Boron; Cell Line; Chelating Agents; Fluorescent Dyes; Hydrogen-Ion Concentration; Macrophages; Mice; Microscopy, Confocal; Nitric Oxide; Onions; Oxygen; Pyrroles

2013
3,5-Diformylboron dipyrromethenes as fluorescent pH sensors.
    Inorganic chemistry, 2011, May-16, Volume: 50, Issue:10

    A series of boron dipyrromethene (BODIPY) dyes containing two aldehyde functional groups at the 3 and 5 positions have been synthesized in low-to-decent yields in two steps. In the first step, the meso-aryl dipyrromethanes were treated with POCl(3) in N,N-dimethylformamide to afford 1,9-diformylated dipyrromethanes. In the second step, the diformylated dipyrromethanes were first in situ oxidized with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and then reacted with BF(3)·OEt(2) to afford 3,5-diformylboron dipyrromethenes. The X-ray structural analysis indicated that the aldehyde groups are involved in intramolecular hydrogen bonding with fluoride atoms, which may be responsible for the stability of the diformylated BODIPY compounds. The presence of two formyl groups significantly alters the electronic properties, which is clearly evident in downfield shifts in the (1)H and (19)F NMR spectra, bathochromic shifts in the absorption and fluorescence spectra, better quantum yields, and increased lifetimes compared to 3,5-unsubstituted BODIPYs. Furthermore, 3,5-diformylboron dipyrromethenes are highly electron-deficient and undergo facile reductions compared to unsubstituted BODIPYs. These compounds exhibit pH-dependent on/off fluorescence and thus act as fluorescent pH sensors.

    Topics: Benzoquinones; Biosensing Techniques; Boron; Boron Compounds; Crystallography, X-Ray; Dimethylformamide; Fluorescence; Fluorescent Dyes; Formamides; Hydrogen Bonding; Hydrogen-Ion Concentration; Magnetic Resonance Spectroscopy; Molecular Structure; Porphobilinogen; Pyrroles; Spectrometry, Fluorescence; Thermodynamics

2011