boron and clinoptilolite

boron has been researched along with clinoptilolite* in 2 studies

Other Studies

2 other study(ies) available for boron and clinoptilolite

ArticleYear
Investigation of organic, inorganic and synthetic adsorbents for the pretreatment of landfill leachate.
    Environmental technology, 2008, Volume: 29, Issue:5

    An investigation into the use of organic, inorganic and synthetic adsorbents for the pretreatment of landfill leachate, generated by the City of Ottawa Trail Road Landfill, was carried out. The purpose of this project was to reduce the concentration of contaminants in order to meet the local Sewer Use By-Laws, prior to transporting the leachate from the generating site to the local municipal sewage treatment plant, and thereby reducing the disposal fees. Peat moss, compost, clinoptilolite, basalt and two types of activated carbon (DSR-A and F400) were investigated to determine the adsorption capacity for contaminants from leachate. Kinetic studies were also performed. The results based on batch adsorption isotherms show that peat moss has the highest adsorption capacity for boron (B) and barium (Ba), compared with the other adsorbents. Also peat moss has good removals of Total Kjeldahl Nitrogen (TKN), Total Organic Carbon (TOC), and benzene, toluene, ethylbenzene and xylene (BTEX), but these are lower than the removals obtained with activated carbon. Because of its relatively low cost and higher adsorption of B and Ba, peat moss was selected as the filter media for the column studies. The treated leachate was tested for B, Ba, TKN, carbonaceous biological oxygen demand (CBOD5) and hydrogen sulfide (H2S). The breakthrough curves for B and Ba showed the effectiveness of peat moss in removing these contaminants.

    Topics: Adsorption; Barium; Boron; Carbon; Charcoal; Kinetics; Nitrogen; Refuse Disposal; Sewage; Silicates; Soil; Soot; Sphagnopsida; Water Pollutants, Chemical; Water Purification; Zeolites

2008
Leaching of boron through sewage sludge amended soil: the role of clinoptilolite.
    Bioresource technology, 2004, Volume: 95, Issue:1

    A laboratory experiment was conducted to determine the release of boron from soil-sewage sludge mixtures by leaching using a clinoptilolite type natural zeolite, before land application of the sewage sludge. Soil columns were filled up with the clinoptilolite soil after mixing with sewage sludge at a rate of 30 tons ha(-1) and with two different particle sizes (0.1-0.25 and 1.0-2.0 mm) of clinoptilolite each at the concentrations of 1% and 2%. The particle size and the application rate of clinoptilolite affected both boron leaching from soil compared to the control treatment (soil and sewage sludge mixture). The total soluble boron leached from a soil column varied from 66-92% depending on the applications of clinoptilolite and reached 96% for the control treatment, following application of 80 cm depth of water in all treatments. In the cases of the 1% application rate of 0.1-0.25 and 1-2 mm sized clinoptilolite 78% and 92% of the total boron leached, respectively. While at 2% application rate of 0.1-0.25 and 1-2 mm zeolite, 66% and 87% of total soluble boron leached, respectively. Boron concentrations in the soil layers increased as application rate increased and particle size of clinoptilolite decreased because of its high adsorption capacity. Adsorption isotherms indicated that clinoptilolite had a high adsorption capacity for boron compared to the sewage sludge and soil.

    Topics: Adsorption; Boron; Particle Size; Sanitary Engineering; Sewage; Soil; Zeolites

2004