boron has been researched along with 1-2-distearoyllecithin* in 2 studies
2 other study(ies) available for boron and 1-2-distearoyllecithin
Article | Year |
---|---|
Design and synthesis of fluorescence-labeled closo-dodecaborate lipid: its liposome formation and in vivo imaging targeting of tumors for boron neutron capture therapy.
The fluorescence-labeled closo-dodecaborane lipid (FL-SBL) was synthesized from (S)-(+)-1,2-isopropylideneglycerol as a chiral starting material. FL-SBL was readily accumulated into the PEGylated DSPC liposomes prepared from DSPC, CH, and DSPE-PEG-OMe by the post insertion protocol. The boron concentrations and the fluorescent intensities of the FL-SBL-labeled DSPC liposomes increased with the increase of the additive FL-SBL, and the maximum emission wavelength of the liposomes appeared at 531 nm. A preliminary in vivo imaging study of tumor-bearing mice revealed that the FL-SBL-labeled DSPC liposomes were delivered to the tumor tissue but not distributed to hypoxic regions. Topics: Animals; Boron; Boron Compounds; Drug Delivery Systems; Female; Fluorescence; Liposomes; Mice; Neoplasms; Oxadiazoles; Phosphatidylcholines; Phosphatidylethanolamines; Polyethylene Glycols; Stearates; Tissue Distribution | 2012 |
Model studies directed toward the boron neutron-capture therapy of cancer: boron delivery to murine tumors with liposomes.
The successful treatment of cancer by boron neutron-capture therapy (BNCT) requires the selective concentration of boron-10 within malignant tumors. The potential of liposomes to deliver boron-rich compounds to tumors has been assessed by the examination of the biodistribution of boron delivered by liposomes in tumor-bearing mice. Small unilamellar vesicles with mean diameters of 70 nm or less, composed of a pure synthetic phospholipid (distearoyl phosphatidylcholine) and cholesterol, have been found to stably encapsulate high concentrations of water-soluble ionic boron compounds. The hydrolytically stable borane anions B10H10(2-), B12H11SH2-, B20H17OH4-, B20H19(3-), and the normal form and photoisomer of B20H18(2-) were encapsulated in liposomes as their soluble sodium salts. The tissue concentration of boron in tumor-bearing mice was measured at several time points over 48 h after i.v. injection of emulsions of liposomes containing the borane anions. Although the boron compounds used do not exhibit an affinity for tumors and are normally rapidly cleared from the body, liposomes were observed to selectively deliver the borane anions to tumors. The highest tumor concentrations achieved reached the therapeutic range (greater than 15 micrograms of boron per g of tumor) while maintaining high tumor-boron/blood-boron ratios (greater than 3). The most favorable results were obtained with the two isomers of B20H18(2-). These boron compounds have the capability to react with intracellular components after they have been deposited within tumor cells by the liposome, thereby preventing the borane ion from being released into blood. Topics: Animals; Boron; Boron Neutron Capture Therapy; Drug Carriers; Hydrolysis; Liposomes; Magnetic Resonance Spectroscopy; Mammary Neoplasms, Experimental; Mice; Mice, Inbred BALB C; Molecular Conformation; Phosphatidylcholines; Tissue Distribution | 1992 |