bmn-673 has been researched along with rucaparib* in 13 studies
8 review(s) available for bmn-673 and rucaparib
Article | Year |
---|---|
[Place of PARP inhibitors in the treatment of endometrial and cervical cancers].
New molecular therapeutic approaches have emerged in recent years for advanced gynaecological cancers, including targeted therapies such as poly-ADP-ribose polymerase inhibitors (PARPi). These have demonstrated efficacy in high-grade serous ovarian cancers in patients carrying a mutation in the BRCA gene, which predisposes them to breast and ovarian cancers. Clinical and pre-clinical data suggest that the activity of PARPi inhibitors may not be limited to BRCA mutated tumours and may involve the homologous recombination pathway. These data raise the question of the potential efficacy of PARPi in advanced endometrial and cervical cancers where treatment options are currently limited. At present, there are few data available on the activity of PARPi in endometrial and cervical cancers, but some results seem promising. In this review, we present a synthesis of the available studies concerning PARPi in endometrial and cervical cancer. Topics: Antineoplastic Agents; Cell Line, Tumor; Cisplatin; Clinical Trials as Topic; DNA Damage; DNA Repair-Deficiency Disorders; Endometrial Neoplasms; Female; Humans; Indazoles; Indoles; Ovarian Neoplasms; Papillomavirus Infections; Phthalazines; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Uterine Cervical Neoplasms | 2022 |
Comparative safety and tolerability of approved PARP inhibitors in cancer: A systematic review and network meta-analysis.
We aimed to evaluate comparative safety and tolerability of the approved PARP inhibitors in people with cancer.. Eligible studies included randomized controlled trials comparing an approved PARP inhibitor (fluzoparib, olaparib, rucaparib, niraparib, or talazoparib) with placebo or chemotherapy in cancer patients. Outcomes of interest included: serious adverse event (SAE), discontinuation due to adverse event (AE), interruption of treatment due to AE, dose reduction due to AE, and specific grade 1-5 AEs.. Ten trials including 3763 participants and six treatments (olaparib, rucaparib, niraparib, talazoparib, placebo, and protocol-specified single agent chemotherapy) were identified. SAE and discontinuation of treatment did not differ significantly among the four approved PARP inhibitors. Regarding interruption of treatment and dose reduction due to AE, statistically significant differences and statistically non-significant trend were observed. Talazoparib is associated with a higher risk of interruption of treatment and dose reduction (excluding rucaparib) due to AE as compared with the other drugs. Niraparib showed a trend of lower risk of AE related dose reduction as compared with the other drugs. Furthermore, there were significant differences in specific grade 1-5 AE among the four drugs.. The safety profile of the four approved PARP inhibitors is comparable in terms of SAE and AE-related discontinuation of treatment. Statistically significant differences in the AEs spectrum and AEs related dose interruption and dose reduction demonstrated the prompt identification of AE and dose personalization seem mandatory to obtain maximal benefit from PARP inhibitors. Topics: Humans; Indazoles; Indoles; Neoplasms; Network Meta-Analysis; Phthalazines; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Randomized Controlled Trials as Topic | 2021 |
Advances in the Treatment of Ovarian Cancer Using PARP Inhibitors and the Underlying Mechanism of Resistance.
The standard treatment for advanced ovarian cancer is cytoreductive surgery followed by cytotoxic chemotherapy. However, it has high risk of recurrence and poor prognosis. Poly(ADPribose) polymerase (PARP) inhibitors selectively target DNA double-strand breaks (DSBs) in tumor cells that cannot be repaired and induce the synthetic lethality of BRCA1/2 mutation cancers. PARP inhibitors are clinically used to treat recurrent ovarian cancer and show significant efficacy in ovarian cancer patients with homologous recombination repair (HRR) pathway defects. PARP inhibitors also have significant clinical benefits in patients without HR defects. With the increasingly extensive clinical application of PARP inhibitors, the possibility of acquiring drug resistance is high. Therefore, clinical strategies should be adopted to manage drug resistance of PARP inhibitors. This study aims to summarize the indications and toxicity of PARP inhibitors, the mechanism of action, targeted treatment of drug resistance, and potential methods to manage drug-resistant diseases. We used the term "ovarian cancer" and the names of each PARP inhibitor as keywords to search articles published in the Medical Subject Headings (MeSH) on Pubmed, along with the keywords "clinicaltrials.gov" and "google.com/patents" as well as "uspto.gov." The FDA has approved olaparib, niraparib, and rucaparib for the treatment of recurrent epithelial ovarian cancer (EOC). Talazoparib and veliparib are currently in early trials and show promising clinical results. The mechanism underlying resistance to PARP inhibitors and the clinical strategies to overcome them remain unclear. Understanding the mechanism of resistance to PARP inhibitors and their relationship with platinum resistance may help with the development of antiresistance therapies and optimization of the sequence of drug application in the future clinical treatment of ovarian cancer. Topics: Antineoplastic Agents; Benzimidazoles; BRCA1 Protein; BRCA2 Protein; Carcinoma, Ovarian Epithelial; DNA Repair; Drug Resistance, Neoplasm; Female; Humans; Indazoles; Indoles; Neoplasm Recurrence, Local; Ovarian Neoplasms; Phthalazines; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases | 2020 |
A decade of clinical development of PARP inhibitors in perspective.
Genomic instability is a hallmark of cancer, and often is the result of altered DNA repair capacities in tumour cells. DNA damage repair defects are common in different cancer types; these alterations can also induce tumour-specific vulnerabilities that can be exploited therapeutically. In 2009, a first-in-man clinical trial of the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib clinically validated the synthetic lethal interaction between inhibition of PARP1, a key sensor of DNA damage, and BRCA1/BRCA2 deficiency. In this review, we summarize a decade of PARP inhibitor clinical development, a work that has resulted in the registration of several PARP inhibitors in breast (olaparib and talazoparib) and ovarian cancer (olaparib, niraparib and rucaparib, either alone or following platinum chemotherapy as maintenance therapy). Over the past 10 years, our knowledge on the mechanism of action of PARP inhibitor as well as how tumours become resistant has been extended, and we summarise this work here. We also discuss opportunities for expanding the precision medicine approach with PARP inhibitors, identifying a wider population who could benefit from this drug class. This includes developing and validating better predictive biomarkers for patient stratification, mainly based on homologous recombination defects beyond BRCA1/BRCA2 mutations, identifying DNA repair deficient tumours in other cancer types such as prostate or pancreatic cancer, or by designing combination therapies with PARP inhibitors. Topics: BRCA1 Protein; BRCA2 Protein; Breast Neoplasms; Female; Genomic Instability; Humans; Indazoles; Indoles; Ovarian Neoplasms; Phthalazines; Piperazines; Piperidines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors | 2019 |
Update on PARP Inhibitors in Breast Cancer.
The single agent activity of PARP inhibitors (PARPi) in germline BRCA mutated (gBRCAm) breast and ovarian cancer suggests untapped potential for this new class of drug in breast cancer. The US Food and Drug Administration has approved three PARPi (olaparib, rucaparib, and niraparib) so far to treat certain ovarian cancers, including those with gBRCAm and olaparib for treatment of gBRCAm breast cancers. Several PARPi are now under clinical development for breast cancer in the various treatment settings. Recently, two phase III trials of olaparib (OlympiaD) and talazoparib (EMBRACA) demonstrated 3-month progression-free survival improvement with PARPi compared to physician's choice single agent chemotherapy in metastatic gBRCAm breast cancer. To date, PARPi seems less efficacious in metastatic breast cancer patients than those with BRCA mutated platinum-sensitive recurrent ovarian cancer, perhaps reflecting the biologic heterogeneity and low somatic BRCA mutation rate in breast cancer. The use of PARPi is gradually evolving, including combination strategies with chemotherapy, targeted agents, radiotherapy, or immunotherapy in women with and without gBRCAm. The role of predictive biomarkers, including molecular signatures and homologous recombination repair deficiency scores based on loss of heterozygosity and other structural genomic aberrations, will be crucial to identify a subgroup of patients who may have benefit from PARPi. An improved understanding of the mechanisms underlying PARPi clinical resistance will also be important to enable the development of new approaches to increase efficacy. This is a field rich in opportunity, and the coming years should see a better understanding of which breast cancer patients we should treat with PARPi and where these agents should come in over the course of treatment. Topics: BRCA1 Protein; BRCA2 Protein; Breast Neoplasms; Female; Humans; Indazoles; Indoles; Neoplasm Recurrence, Local; Phthalazines; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Progression-Free Survival | 2018 |
Using PARP Inhibitors in the Treatment of Patients With Ovarian Cancer.
Use of poly(ADP-ribose) polymerase (PARP) inhibitors has greatly increased over the past 5 years. With several new Food and Drug Administration (FDA) approvals, three PARP inhibitors have entered into standard of care treatment for epithelial ovarian cancer (including ovarian, fallopian tube, and primary peritoneal cancer). Olaparib and rucaparib currently have indications for treatment of recurrent BRCA mutant ovarian cancer. Olaparib, rucaparib, and niraparib all have indications for maintenance therapy in recurrent platinum-sensitive ovarian cancer after response to platinum-based therapy. In our practice, we use both olaparib and rucaparib in the recurrent setting, and all three PARP inhibitors in the maintenance setting. Choice of which PARP inhibitor to use in either setting is largely based upon baseline laboratory values, number of prior therapies, and presence of a BRCA mutation and/or homologous recombination deficiency (HRD). As (HRD) and other biomarker assessments continue to improve, we anticipate being able to better identify which patients might most benefit from PARP inhibitor therapy in the future. The clinically available PARP inhibitors are currently undergoing extensive investigations in clinical trials. Other newer agents such as talazoparib, veliparib, 2X-121, and CEP-9722 are in earlier stages of development. As more FDA-approved indications for PARP inhibitor therapy in ovarian cancer become available, we anticipate the decision of which PARP inhibitor to use will become increasingly complex. Topics: Antineoplastic Combined Chemotherapy Protocols; Benzimidazoles; BRCA1 Protein; BRCA2 Protein; Carbazoles; Carcinoma, Ovarian Epithelial; Female; Humans; Indazoles; Indoles; Neoplasm Recurrence, Local; Ovarian Neoplasms; Ovary; Phthalazines; Phthalimides; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors | 2018 |
[Cancer therapy by PARP inhibitors].
Poly(ADP-ribose) polymerases(PARP) synthesize the ADP-ribose polymers onto proteins and play a role in DNA repair. PARP inhibitors block the repair of single-strand breaks, which in turn gives rise to double-strand breaks during DNA replication. Thus, PARP inhibitors elicit synthetic lethality in cancer with BRCA1/2 loss-of-function mutations that hamper homologous recombination repair of double-strand breaks. Olaparib, the first-in-class PARP inhibitor, was approved for treatment of BRCA-mutated ovarian cancer in Europe and the United States in 2014. Other PARP inhibitors under clinical trials include rucaparib, niraparib, veliparib, and the "PARP-trapping" BMN-673. BRCA1/2 sequencing is an FDA-approved companion diagnostics, which predicts the cancer vulnerability to PARP inhibition. Together, synthetic lethal PARP inhibition is a novel promising strategy for cancer intervention even in cases without prominent driver oncogenes. Topics: Antineoplastic Agents; Benzimidazoles; BRCA1 Protein; BRCA2 Protein; DNA Breaks, Double-Stranded; DNA Replication; DNA, Single-Stranded; Enzyme Inhibitors; Humans; Indazoles; Indoles; Molecular Targeted Therapy; Mutation; Neoplasms; Phthalazines; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Recombinational DNA Repair | 2015 |
PARP inhibitors in ovarian cancer: current status and future promise.
Clinical investigation of poly(ADP-ribose) polymerase (PARP) inhibitors for ovarian cancer treatment has rapidly evolved from observations of single-agent in vitro activity of these agents in BRCA-deficient cancer cells in 2005 to the initiation of multiple phase III studies in 2013. With clinical trial design and treatment of ovarian cancer increasingly based on histological and molecular characteristics, PARP inhibitors are on the horizon of becoming the first biologic agents to be used to treat ovarian cancer based upon pre-selection characteristics of the patient's cancer. PARP inhibitors are most active in ovarian cancers that have defects or aberrations in DNA repair; use of these agents has been of particular interest in high grade serous cancers (HGSC), where studies have shown that ~50% of HGSC have abnormalities of DNA repair through BRCA germline and somatic mutation, post-translational changes of BRCA, and abnormalities of other DNA repair molecules. In addition, as aberrant DNA pathways in other histological subtypes of ovarian cancer are identified, and through the combination of PARP inhibitors with other biologic agents, the pool of eligible patients who may benefit from PARP inhibitors will likely expand. Pending review by the Food and Drug Administration (FDA) and the outcome of confirmatory phase III studies, PARP inhibitors could become the first FDA-approved biologic agent for ovarian cancer and also the first new FDA-approval in ovarian cancer since carboplatin and gemcitabine were approved for platinum sensitive ovarian cancer in 2006. This review discusses the PARP inhibitors that are currently in testing for ovarian cancer treatment and the future of this class of anti-cancer agents. Topics: Antineoplastic Agents; Benzimidazoles; DNA Repair; Female; Genes, BRCA1; Genes, BRCA2; Humans; Indazoles; Indoles; Ovarian Neoplasms; Phthalazines; Piperazines; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors | 2014 |
5 other study(ies) available for bmn-673 and rucaparib
Article | Year |
---|---|
Histone Parylation factor 1 contributes to the inhibition of PARP1 by cancer drugs.
Poly-(ADP-ribose) polymerase 1 and 2 (PARP1 and PARP2) are key enzymes in the DNA damage response. Four different inhibitors (PARPi) are currently in the clinic for treatment of ovarian and breast cancer. Recently, histone PARylation Factor 1 (HPF1) has been shown to play an essential role in the PARP1- and PARP2-dependent poly-(ADP-ribosylation) (PARylation) of histones, by forming a complex with both enzymes and altering their catalytic properties. Given the proximity of HPF1 to the inhibitor binding site both PARPs, we hypothesized that HPF1 may modulate the affinity of inhibitors toward PARP1 and/or PARP2. Here we demonstrate that HPF1 significantly increases the affinity for a PARP1 - DNA complex of some PARPi (i.e., olaparib), but not others (i.e., veliparib). This effect of HPF1 on the binding affinity of Olaparib also holds true for the more physiologically relevant PARP1 - nucleosome complex but does not extend to PARP2. Our results have important implications for the interpretation of PARP inhibition by current PARPi as well as for the design and analysis of the next generation of clinically relevant PARP inhibitors. Topics: Antineoplastic Agents; Benzamides; Benzimidazoles; Binding Sites; Carrier Proteins; Catalysis; Catalytic Domain; DNA Repair Enzymes; Humans; Indazoles; Indoles; Nuclear Proteins; Phthalazines; Piperazines; Piperidines; Poly (ADP-Ribose) Polymerase-1; Protein Binding | 2021 |
The kinase polypharmacology landscape of clinical PARP inhibitors.
Polypharmacology plays an important role in defining response and adverse effects of drugs. For some mechanisms, experimentally mapping polypharmacology is commonplace, although this is typically done within the same protein class. Four PARP inhibitors have been approved by the FDA as cancer therapeutics, yet a precise mechanistic rationale to guide clinicians on which to choose for a particular patient is lacking. The four drugs have largely similar PARP family inhibition profiles, but several differences at the molecular and clinical level have been reported that remain poorly understood. Here, we report the first comprehensive characterization of the off-target kinase landscape of four FDA-approved PARP drugs. We demonstrate that all four PARP inhibitors have a unique polypharmacological profile across the kinome. Niraparib and rucaparib inhibit DYRK1s, CDK16 and PIM3 at clinically achievable, submicromolar concentrations. These kinases represent the most potently inhibited off-targets of PARP inhibitors identified to date and should be investigated further to clarify their potential implications for efficacy and safety in the clinic. Moreover, broad kinome profiling is recommended for the development of PARP inhibitors as PARP-kinase polypharmacology could potentially be exploited to modulate efficacy and side-effect profiles. Topics: Antineoplastic Agents; Binding Sites; Cyclin-Dependent Kinases; Dyrk Kinases; HEK293 Cells; Humans; Indazoles; Indoles; Isoenzymes; Molecular Docking Simulation; Neoplasms; Phthalazines; Piperazines; Piperidines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Polypharmacology; Protein Binding; Protein Interaction Domains and Motifs; Protein Serine-Threonine Kinases; Protein Structure, Secondary; Protein-Tyrosine Kinases; Proto-Oncogene Proteins; Substrate Specificity | 2020 |
PARP Inhibitor Activity Correlates with SLFN11 Expression and Demonstrates Synergy with Temozolomide in Small Cell Lung Cancer.
PARP inhibitors (PARPi) are a novel class of small molecule therapeutics for small cell lung cancer (SCLC). Identification of predictors of response would advance our understanding, and guide clinical application, of this therapeutic strategy.. Efficacy of PARP inhibitors olaparib, rucaparib, and veliparib, as well as etoposide and cisplatin in SCLC cell lines, and gene expression correlates, was analyzed using public datasets. HRD genomic scar scores were calculated from Affymetrix SNP 6.0 arrays. In vitro talazoparib efficacy was measured by cell viability assays. For functional studies, CRISPR/Cas9 and shRNA were used for genomic editing and transcript knockdown, respectively. Protein levels were assessed by immunoblotting and immunohistochemistry (IHC). Quantitative synergy of talazoparib and temozolomide was determined in vitro In vivo efficacy of talazoparib, temozolomide, and the combination was assessed in patient-derived xenograft (PDX) models.. We identified SLFN11, but not HRD genomic scars, as a consistent correlate of response to all three PARPi assessed, with loss of SLFN11 conferring resistance to PARPi. We confirmed these findings in vivo across multiple PDX and defined IHC staining for SLFN11 as a predictor of talazoparib response. As temozolomide has activity in SCLC, we investigated combination therapy with talazoparib and found marked synergy in vitro and efficacy in vivo, which did not solely depend on SLFN11 or MGMT status.. SLFN11 is a relevant predictive biomarker of sensitivity to PARP inhibitor monotherapy in SCLC and we identify combinatorial therapy with TMZ as a particularly promising therapeutic strategy that warrants further clinical investigation. Clin Cancer Res; 23(2); 523-35. ©2016 AACR. Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Benzimidazoles; Cell Line, Tumor; Cisplatin; Dacarbazine; Drug Synergism; Etoposide; Gene Expression Regulation, Neoplastic; Genomics; Humans; Indoles; Mice; Nuclear Proteins; Phthalazines; Piperazines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Small Cell Lung Carcinoma; Temozolomide; Xenograft Model Antitumor Assays | 2017 |
Synthetic Lethality Exploitation by an Anti-Trop-2-SN-38 Antibody-Drug Conjugate, IMMU-132, Plus PARP Inhibitors in
Topics: Animals; Antibodies, Monoclonal, Humanized; Antineoplastic Combined Chemotherapy Protocols; BRCA1 Protein; BRCA2 Protein; Camptothecin; Cell Line, Tumor; DNA Repair; DNA Topoisomerases, Type I; Drug Resistance, Neoplasm; Female; Gene Expression Regulation, Neoplastic; Humans; Immunoconjugates; Indoles; Mice; Phthalazines; Piperazines; Poly(ADP-ribose) Polymerase Inhibitors; Synthetic Lethal Mutations; Triple Negative Breast Neoplasms; Xenograft Model Antitumor Assays | 2017 |
Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib.
Anti-PARP drugs were initially developed as catalytic inhibitors to block the repair of DNA single-strand breaks. We recently reported that several PARP inhibitors have an additional cytotoxic mechanism by trapping PARP-DNA complexes, and that both olaparib and niraparib act as PARP poisons at pharmacologic concentrations. Therefore, we have proposed that PARP inhibitors should be evaluated based both on catalytic PARP inhibition and PARP-DNA trapping. Here, we evaluated the novel PARP inhibitor, BMN 673, and compared its effects on PARP1 and PARP2 with two other clinical PARP inhibitors, olaparib and rucaparib, using biochemical and cellular assays in genetically modified chicken DT40 and human cancer cell lines. Although BMN 673, olaparib, and rucaparib are comparable at inhibiting PARP catalytic activity, BMN 673 is ∼100-fold more potent at trapping PARP-DNA complexes and more cytotoxic as single agent than olaparib, whereas olaparib and rucaparib show similar potencies in trapping PARP-DNA complexes. The high level of resistance of PARP1/2 knockout cells to BMN 673 demonstrates the selectivity of BMN 673 for PARP1/2. Moreover, we show that BMN 673 acts by stereospecific binding to PARP1 as its enantiomer, LT674, is several orders of magnitude less efficient. BMN 673 is also approximately 100-fold more cytotoxic than olaparib and rucaparib in combination with the DNA alkylating agents methyl methane sulfonate (MMS) and temozolomide. Our study demonstrates that BMN 673 is the most potent clinical PARP inhibitor tested to date with the highest efficiency at trapping PARP-DNA complexes. Topics: Adenosine Triphosphate; Animals; Cell Cycle; Cell Line, Tumor; Cell Survival; Dacarbazine; DNA; Dose-Response Relationship, Drug; Drug Synergism; Enzyme Inhibitors; Fluorescence Polarization; Humans; Immunoblotting; Indoles; Inhibitory Concentration 50; Methyl Methanesulfonate; Molecular Structure; Phthalazines; Piperazines; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Stereoisomerism; Temozolomide | 2014 |