blister and diacetylmonoxime

blister has been researched along with diacetylmonoxime* in 13 studies

Other Studies

13 other study(ies) available for blister and diacetylmonoxime

ArticleYear
Cauliflower mosaic virus P6 inclusion body formation: A dynamic and intricate process.
    Virology, 2021, 01-15, Volume: 553

    During an infection, Cauliflower mosaic virus (CaMV) forms inclusion bodies (IBs) mainly composed of viral protein P6, where viral activities occur. Because viral processes occur in IBs, understanding the mechanisms by which they are formed is crucial. FL-P6 expressed in N. benthamiana leaves formed IBs of a variety of shapes and sizes. Small IBs were dynamic, undergoing fusion/dissociation events. Co-expression of actin-binding polypeptides with FL-P6 altered IB size distribution and inhibited movement. This suggests that IB movement is required for fusion and growth. A P6 deletion mutant was discovered that formed a single large IB per cell, which suggests it exhibited altered fusion/dissociation dynamics. Myosin-inhibiting drugs did not affect small IB movement, while those inhibiting actin polymerization did. Large IBs colocalized with components of the aggresome pathway, while small ones generally did not. This suggests a possible involvement of the aggresome pathway in large IB formation.

    Topics: Actin Cytoskeleton; Caulimovirus; Cell Membrane; Coiled Bodies; Diacetyl; Heterocyclic Compounds, 4 or More Rings; Inclusion Bodies, Viral; Microfilament Proteins; Mutation; Nicotiana; Plant Leaves; Protein Domains; Trans-Activators

2021
Role of both actin-myosin cross bridges and NO-cGMP pathway modulators in the contraction and relaxation of human placental stem villi.
    Placenta, 2013, Volume: 34, Issue:12

    Human placental stem villi (PSV) present contractile properties. We studied the role of actin-myosin cross bridges (CBs) and the effects of NO-cGMP pathway modulators in the PSV contraction and relaxation.. In vitro contractile properties were investigated in 71 PSV from term human placentas studied according to their long axis. Contraction was induced by both KCl and electrical tetanic stimulation. Relaxation was induced by inhibiting the CB cycle with either 2,3-butanedione monoxime (BDM) or blebbistatin (BLE) and by activating the NO-cGMP pathway with isosorbide dinitrate (ISDN), sildenafil (SIL) or ISDN + SIL.. PSV tension slowly increased by 140% of the basal tone after KCl exposure and by 85% after tetanus. The addition of BDM, BLE, ISDN, SIL and ISDN + SIL induced a relaxation of PSV, the overall time course of relaxation (in s) was respectively (means ± SD) 3412 ± 1904, 14,250 ± 3095*, 3813 ± 1383, 2883 ± 1188 and 2440 ± 477; significantly longer in BLE compared with BDM, ISDN, SIL and ISDN + SIL:*p < 0.001). the overall time course of relaxation (in s) was respectively (means ± SD) 3412 ± 1904, 14,250 ± 3095*, 3813 ± 1383, 2883 ± 1188 and 2440 ± 477; significantly longer in BLE compared with BDM, ISDN, SIL and ISDN + SIL:*p < 0.001). These relaxation kinetics were particularly slow. Other relaxation parametres, i.e., maximum lengthening, -peak dT/dt, and resting tension, did not differ between these 5 subgroups.. Isolated human PSV were able to contract after both KCl exposure and tetanus. This increase in contractility was reversed by inhibiting the CB cycle with BDM or BLE and by stimulating the NO-cGMP pathway with ISDN or SIL. The association ISDN + SIL did not potentiate the relaxing processes.

    Topics: Actins; Chorionic Villi; Cyclic GMP; Diacetyl; Electric Stimulation; Enzyme Inhibitors; Female; Heterocyclic Compounds, 4 or More Rings; Humans; In Vitro Techniques; Isosorbide Dinitrate; Kinetics; Myosins; Nitric Oxide; Nitric Oxide Donors; Piperazines; Pliability; Potassium Chloride; Pregnancy; Protein Structure, Quaternary; Purines; Second Messenger Systems; Sildenafil Citrate; Sulfones; Term Birth

2013
Increased passive stiffness of cardiomyocytes in the transverse direction and residual actin and myosin cross-bridge formation in hypertrophied rat hearts induced by chronic β-adrenergic stimulation.
    Circulation journal : official journal of the Japanese Circulation Society, 2013, Volume: 77, Issue:3

    Left ventricular (LV) hypertrophy is often present in patients with diastolic heart failure. However, stiffness of hypertrophied cardiomyocytes in the transverse direction has not been fully elucidated. The aim of this study was to assess passive cardiomyocyte stiffness of hypertrophied hearts in the transverse direction and the influence of actin-myosin cross-bridge formation on the stiffness.. Wistar rats received a vehicle (control) or isoproterenol (ISO) subcutaneously. After 7 days, compared with the controls, ISO administration had significantly increased heart weight and LV wall thickness and had decreased peak early annular relaxation velocity (e') assessed by echocardiography. Elastic modulus of living cardiomyocytes in the transverse direction assessed by an atomic force microscope was significantly higher in the ISO group than in controls. We added butanedione monoxime (BDM), an inhibitor of actin-myosin interaction, and blebbistatin, a specific myosin II inhibitor, to the medium. BDM and blebbistatin significantly reduced the elastic modulus of cardiomyocytes in the ISO group. X-ray diffraction analysis showed that the reflection intensity ratio (I((1,0))/I((1,1))) at diastole was not different before and after treatment with BDM, which induces complete relaxation, in control hearts, but that I((1,0))/I((1,1)) was significantly increased after BDM treatment in the ISO group, indicating residual cross-bridge formation in hypertrophied hearts.. Passive cardiomyocyte stiffness in the transverse direction is increased in hearts with ISO-induced hypertrophy and this is caused by residual actin-myosin cross-bridge formation. 

    Topics: Actins; Adrenergic beta-Agonists; Animals; Cardiomegaly; Cells, Cultured; Diacetyl; Disease Models, Animal; Elasticity; Enzyme Inhibitors; Heterocyclic Compounds, 4 or More Rings; Hypertrophy, Left Ventricular; Isoproterenol; Male; Microscopy, Atomic Force; Myocytes, Cardiac; Myosins; Organ Size; Papillary Muscles; Radiography; Rats; Rats, Wistar; Ultrasonography

2013
The role of dynamic instability and wavelength in arrhythmia maintenance as revealed by panoramic imaging with blebbistatin vs. 2,3-butanedione monoxime.
    American journal of physiology. Heart and circulatory physiology, 2012, Jan-01, Volume: 302, Issue:1

    Unlike other excitation-contraction uncouplers, blebbistatin has few electrophysiological side effects and has gained increasing acceptance as an excitation-contraction uncoupler in optical mapping experiments. However, the possible role of blebbistatin in ventricular arrhythmia has hitherto been unknown. Furthermore, experiments with blebbistatin and 2,3-butanedione monoxime (BDM) offer an opportunity to assess the contribution of dynamic instability and wavelength of impulse propagation to the induction and maintenance of ventricular arrhythmia. Recordings of monophasic action potentials were used to assess effects of blebbistatin in Langendorff-perfused rabbit hearts (n = 5). Additionally, panoramic optical mapping experiments were conducted in rabbit hearts (n = 7) that were sequentially perfused with BDM, then washed out, and subsequently perfused with blebbistatin. The susceptibility to arrhythmia was investigated using a shock-on-T protocol. We found that 1) application of blebbistatin did not change action potential duration (APD) restitution; 2) in contrast to blebbistatin, BDM flattened APD restitution curve and reduced the wavelength; and 3) incidence of sustained arrhythmia was much lower under blebbistatin than under BDM (2/123 vs. 23/99). While arrhythmias under BDM were able to stabilize, the arrhythmias under blebbistatin were unstable and terminated spontaneously. In conclusion, the lower susceptibility to arrhythmia under blebbistatin than under BDM indicates that blebbistatin has less effects on arrhythmia dynamics. A steep restitution slope under blebbistatin is associated with higher dynamic instability, manifested by the higher incidence of not only wave breaks but also wave extinctions. This relatively high dynamic instability leads to the self-termination of arrhythmia because of the sufficiently long wavelength under blebbistatin.

    Topics: Action Potentials; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Cardiac Pacing, Artificial; Diacetyl; Disease Models, Animal; Excitation Contraction Coupling; Heart Conduction System; Heterocyclic Compounds, 4 or More Rings; Perfusion; Rabbits; Time Factors; Voltage-Sensitive Dye Imaging

2012
Modifications of mechanoelectric feedback induced by 2,3-butanedione monoxime and Blebbistatin in Langendorff-perfused rabbit hearts.
    Acta physiologica (Oxford, England), 2012, Volume: 206, Issue:1

    Myocardial stretching is an arrhythmogenic factor. Optical techniques and mechanical uncouplers are used to study the mechanoelectric feedback. The aim of this study is to determine whether the mechanical uncouplers 2,3-butanedione monoxime and Blebbistatin hinder or modify the electrophysiological effects of acute mechanical stretch.. The ventricular fibrillation (VF) modifications induced by acute mechanical stretch were studied in 27 Langendorff-perfused rabbit hearts using epicardial multiple electrodes and mapping techniques under control conditions (n = 9) and during the perfusion of 2,3-butanedione monoxime (15 mM) (n = 9) or Blebbistatin (10 μm) (n = 9).. In the control series, myocardial stretch increased the complexity of the activation maps and the dominant frequency (DF) of VF from 13.1 ± 2.0 Hz to 19.1 ± 3.1 Hz (P < 0.001, 46% increment). At baseline, the activation maps showed less complexity in both the 2,3-butanedione monoxime and Blebbistatin series, and the DF was lower in the 2,3-butanedione monoxime series (11.4 ± 1.2 Hz; P < 0.05). The accelerating effect of mechanical stretch was abolished under 2,3-butanedione monoxime (maximum DF = 11.7 ± 2.4 Hz, 5% increment, ns vs baseline, P < 0.0001 vs. control series) and reduced under Blebbistatin (maximum DF = 12.9 ± 0.7 Hz, 8% increment, P < 0.01 vs. baseline, P < 0.0001 vs. control series). The variations in complexity of the activation maps under stretch were not significant in the 2,3-butanedione monoxime series and were significantly attenuated under Blebbistatin.. The accelerating effect and increased complexity of myocardial activation during VF induced by acute mechanical stretch are abolished under the action of 2,3-butanedione monoxime and reduced under the action of Blebbistatin.

    Topics: Animals; Diacetyl; Enzyme Inhibitors; Feedback, Physiological; Heart; Heterocyclic Compounds, 4 or More Rings; Organ Culture Techniques; Rabbits

2012
Mouse intact cardiac myocyte mechanics: cross-bridge and titin-based stress in unactivated cells.
    The Journal of general physiology, 2011, Volume: 137, Issue:1

    A carbon fiber-based cell attachment and force measurement system was used to measure the diastolic stress-sarcomere length (SL) relation of mouse intact cardiomyocytes, before and after the addition of actomyosin inhibitors (2,3-butanedione monoxime [BDM] or blebbistatin). Stress was measured during the diastolic interval of twitching myocytes that were stretched at 100% base length/second. Diastolic stress increased close to linear from 0 at SL 1.85 µm to 4.2 mN/mm(2) at SL 2.1 µm. The actomyosin inhibitors BDM and blebbistatin significantly lowered diastolic stress by ∼1.5 mN/mm(2) (at SL 2.1 µm, ∼30% of total), suggesting that during diastole actomyosin interaction is not fully switched off. To test this further, calcium sensitivity of skinned myocytes was studied under conditions that simulate diastole: 37°C, presence of Dextran T500 to compress the myofilament lattice to the physiological level, and [Ca(2+)] from below to above 100 nM. Mean active stress was significantly increased at [Ca(2+)] > 55 nM (pCa 7.25) and was ∼0.7 mN/mm(2) at 100 nM [Ca(2+)] (pCa 7.0) and ∼1.3 mN/mm(2) at 175 nM Ca(2+) (pCa 6.75). Inhibiting active stress in intact cells attached to carbon fibers at their resting SL and stretching the cells while first measuring restoring stress (pushing outward) and then passive stress (pulling inward) made it possible to determine the passive cell's mechanical slack SL as ∼1.95 µm and the restoring stiffness and passive stiffness of the cells around the slack SL each as ∼17 mN/mm(2)/µm/SL. Comparison between the results of intact and skinned cells shows that titin is the main contributor to restoring stress and passive stress of intact cells, but that under physiological conditions, calcium sensitivity is sufficiently high for actomyosin interaction to contribute to diastolic stress. These findings are relevant for understanding diastolic function and for future studies of diastolic heart failure.

    Topics: Actin Cytoskeleton; Actomyosin; Animals; Blood Pressure; Calcium; Carbon; Carbon Fiber; Connectin; Diacetyl; Heart; Heterocyclic Compounds, 4 or More Rings; Male; Mice; Mice, Inbred C57BL; Muscle Proteins; Myocardial Contraction; Myocytes, Cardiac; Protein Kinases; Sarcomeres; Stress, Mechanical

2011
Blebbistatin effectively uncouples the excitation-contraction process in zebrafish embryonic heart.
    Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 2010, Volume: 25, Issue:4-5

    The zebrafish is an emerging model system for the study of cardiac electrophysiology and human arrhythmias. High resolution imaging techniques are powerful tools for the study of zebrafish cardiac electrophysiology, but these methods require the complete absence of cardiac contraction. Many pharmacological agents that uncouple cardiac contraction also markedly alter the cardiac action potential (AP). In this study, we compared the effects two uncoupling agents, 2,3-Butanedione monoxime (BDM) and blebbistatin, on contractility and AP parameters in embryonic zebrafish heart.. Zebrafish hearts were explanted (48 hpf) and superfused with either BDM (15 mM) or blebbistatin (1, 5 or 10 microM), while recording atrial or ventricular APs with the disrupted patch technique. Calcium transients were recorded with a high-speed confocal scanning microscope in hearts loaded intracellularly with 10 microM fluo-4 and superfused with 10 microM blebbistatin.. Despite abolishing cardiac contractility, BDM altered ventricular AP morphology and inhibited spontaneous APs. In contrast, blebbistatin (10 microM) abolished contractility without significantly altering AP morphology or generation of spontaneous APs. Blebbistatin allowed for high fidelity measurements of atrial and ventricular calcium transients.. Blebbistatin is a potent and effective excitation-contraction uncoupling agent in embryonic zebrafish heart.

    Topics: Action Potentials; Animals; Diacetyl; Heart; Heterocyclic Compounds, 4 or More Rings; Myocardial Contraction; Zebrafish

2010
Effect of nonuniform muscle contraction on sustainability and frequency of triggered arrhythmias in rat cardiac muscle.
    Circulation, 2010, Jun-29, Volume: 121, Issue:25

    Arrhythmias are benign or lethal, depending on their sustainability and frequency. To determine why lethal arrhythmias are prone to occur in diseased hearts, usually characterized by nonuniform muscle contraction, we investigated the effect of nonuniformity on sustainability and frequency of triggered arrhythmias.. Force, membrane potential, and intracellular Ca(2+) concentration ([Ca(2+)](i)) were measured in 51 rat ventricular trabeculae. Nonuniform contraction was produced by exposing a restricted region of muscle to a jet of 20 mmol/L 2,3-butanedione monoxime (BDM) or 20 mumol/L blebbistatin. Sustained arrhythmias (>10 seconds) could be induced by stimulus trains for 7.5 seconds only with the BDM or blebbistatin jet (100 nmol/L isoproterenol, 1.0 mmol/L [Ca(2+)](o), 24 degrees C). During sustained arrhythmias, Ca(2+) surges preceded synchronous increases in [Ca(2+)](i), whereas the stoppage of the BDM jet made the Ca(2+) surges unclear and arrested sustained arrhythmias (n=6). With 200 nmol/L isoproterenol, 2.5 mmol/L [Ca(2+)](o), and the BDM jet, lengthening or shortening of the muscle during sustained arrhythmias accelerated or decelerated their cycle in both the absence (n=10) and presence (n=10) of 100 mumol/L streptomycin, a stretch-activated channel blocker, respectively. The maximum rate of force relaxation correlated inversely with the change in cycle lengths (n=14; P<0.01). Sustained arrhythmias with the BDM jet were significantly accelerated by 30 mumol/L SCH00013, a Ca(2+) sensitizer of myofilaments (n=10).. These results suggest that nonuniformity of muscle contraction is an important determinant of the sustainability and frequency of triggered arrhythmias caused by the surge of Ca(2+) dissociated from myofilaments in cardiac muscle.

    Topics: Actin Cytoskeleton; Animals; Arrhythmias, Cardiac; Calcium Signaling; Diacetyl; Heart; Heart Ventricles; Heterocyclic Compounds, 4 or More Rings; Membrane Potentials; Myocardial Contraction; Rats

2010
Blebbistatin: use as inhibitor of muscle contraction.
    Pflugers Archiv : European journal of physiology, 2008, Volume: 455, Issue:6

    Blebbistatin (BLEB) is a recently discovered compound that inhibits myosin-II ATPase activity. In this study, we tested BLEB in intact and skinned isolated rat cardiac trabeculae, rat intact myocytes, and single rabbit psoas myofibrils. BLEB (10 muM) reduced twitch force and cell shortening that was reversed by exposure to light. BLEB treatment of skinned trabeculae in the dark (1 hr) reduced Ca(2+)-activated force (EC(50) = 0.38 +/- 0.03 muM). Rapid (<5 ms) BLEB application in Ca(2+)-activated rabbit myofibrils reduced force proportional to [BLEB]. Two-photon Indo1-AM ratio-metric confocal line-scan microscopy revealed no impact of BLEB on the cytosolic Ca(2+) transient. BLEB reduced contractile force in skinned trabeculae without affecting tension-dependent myofilament ATPase activity. We conclude that BLEB specifically uncouples cardiac myofilament activation from Ca(2+) activation without affecting EC coupling or cross-bridge cycling parameters. This agent could be useful to uncouple myofilament contractility from electrical events that lead to sarcoplasmic reticulum Ca(2+) release in the cardiac myocyte (uncoupling agent) However, the compound is very sensitive to light, a property that limits its application to mechanistic physiological studies.

    Topics: Actin Cytoskeleton; Adenosine Triphosphatases; Aniline Compounds; Animals; Calcium Signaling; Cytosol; Data Interpretation, Statistical; Diacetyl; Dose-Response Relationship, Drug; Electric Stimulation; Enzyme Inhibitors; Fluorescent Dyes; Heterocyclic Compounds, 4 or More Rings; In Vitro Techniques; Male; Microscopy, Confocal; Muscle Contraction; Muscle Fibers, Skeletal; Muscle, Skeletal; Rats; Xanthenes

2008
Blebbistatin extends culture life of adult mouse cardiac myocytes and allows efficient and stable transgene expression.
    American journal of physiology. Heart and circulatory physiology, 2008, Volume: 294, Issue:4

    The characterization of cellular phenotypes of heart disorders can be achieved by isolating cardiac myocytes from mouse models or genetically modifying wild-type cells in culture. However, adult mouse cardiac myocytes show extremely low tolerance to isolation and primary culture conditions. Previous studies indicate that 2,3-butanedione monoximine (BDM), a nonspecific excitation-contraction coupling inhibitor, can improve the viability of isolated adult mouse cardiac myocytes. The mechanisms of the beneficial and unwanted nonspecific actions of BDM on cardiac myocytes are not understood. To understand what contributes to murine adult cardiac myocyte stability in primary culture and improve this model system for experimental use, the specific myosin II inhibitor blebbistatin was explored as a media supplement to inhibit mouse myocyte contraction. Enzymatically isolated adult mouse cardiac myocytes were cultured with blebbistatin or BDM as a media supplement. Micromolar concentrations of blebbistatin significantly increased the viability, membrane integrity, and morphology of adult cardiac myocytes compared with cells treated with previously described 10 mM BDM. Cells treated with blebbistatin also showed efficient adenovirus gene transfer and stable transgene expression, and unlike BDM, blebbistatin does not appear to interfere with cell adhesion. Higher concentrations of BDM actually worsened myocyte membrane integrity and transgene expression. Therefore, the specific inhibition of myosin II activity by blebbistatin has significant beneficial effects on the long-term viability of adult mouse cardiac myocytes. Furthermore, the unwanted effects of BDM on adult mouse cardiac myocytes, perhaps due to its nonspecific activities or action as a chemical phosphatase, can be avoided by using blebbistatin.

    Topics: Adenoviridae; Animals; Cell Adhesion; Cell Culture Techniques; Cell Membrane; Cell Shape; Cell Survival; Cells, Cultured; Diacetyl; Dose-Response Relationship, Drug; Enzyme Inhibitors; Genetic Vectors; Green Fluorescent Proteins; Heterocyclic Compounds, 4 or More Rings; Mice; Mice, Inbred C57BL; Myocardial Contraction; Myocytes, Cardiac; Myosin Type II; Time Factors; Transfection; Transgenes

2008
Catch force links and the low to high force transition of myosin.
    Biophysical journal, 2006, May-01, Volume: 90, Issue:9

    Catch is characterized by maintenance of force with very low energy utilization in some invertebrate muscles. Catch is regulated by phosphorylation of the mini-titin, twitchin, and a catch component of force exists at all [Ca2+] except those resulting in maximum force. The mechanism responsible for catch force was characterized by determining how the effects of agents that inhibit the low to high force transition of the myosin cross-bridge (inorganic phosphate, butanedione monoxime, trifluoperazine, and blebbistatin) are modified by twitchin phosphorylation and [Ca2+]. In permeabilized anterior byssus retractor muscles from Mytilus edulis, catch force was identified as being sensitive to twitchin phosphorylation, whereas noncatch force was insensitive. In all cases, inhibition of the low to high force transition caused an increase in catch force. The same relationship exists between catch force and noncatch force whether force is varied by changes in [Ca2+] and/or agents that inhibit cross-bridge force production. This suggests that myosin in the high force state detaches catch force maintaining structures, whereas myosin in the low force state promotes their formation. It is unlikely that the catch structure is the myosin cross-bridge; rather, it appears that myosin interacts with the structure, most likely twitchin, and regulates its attachment and detachment.

    Topics: Animals; Cyclic AMP; Diacetyl; Heterocyclic Compounds, 4 or More Rings; Muscle Contraction; Muscles; Myosins; Mytilus edulis; Organ Preservation Solutions; Phosphates; Tissue Culture Techniques; Trifluoperazine

2006
Myosin-based contraction is not necessary for cardiac c-looping in the chick embryo.
    Anatomy and embryology, 2006, Volume: 211, Issue:5

    During the initial phase of cardiac looping, known as c-looping, the heart bends and twists into a c-shaped tube with the convex outer curvature normally directed toward the right side of the embryo. Despite intensive study for more than 80 years, the biophysical mechanisms that drive and regulate looping remain poorly understood, although some investigators have speculated that differential cytoskeletal contraction supplies the driving force for c-looping. The purpose of this investigation was to test this hypothesis. To inhibit contraction, embryonic chick hearts at stages 10-12 (10-16 somites, 33-48 h) were exposed to the myosin inhibitors 2,3-butanedione monoxime (BDM), ML-7, Y-27632, and blebbistatin. Experiments were conducted in both whole embryo culture and, to focus on bending alone, isolated heart culture. Measurements of heart stiffness and phosphorylation of the myosin regulatory light chains showed that BDM, Y-27632, and blebbistatin significantly reduced myocardial contractility, while ML-7 had a lesser effect. None of these drugs significantly affected looping during the studied stages. These results suggest that active contraction is not required for normal c-looping of the embryonic chick heart between stages 10 and 12.

    Topics: Amides; Animals; Azepines; Chick Embryo; Chickens; Cytoskeleton; Diacetyl; Enzyme Inhibitors; Heart; Heterocyclic Compounds, 4 or More Rings; Myocardial Contraction; Myosin Light Chains; Naphthalenes; Organ Culture Techniques; Phosphorylation; Pyridines; Somites; Torsion Abnormality

2006
Redundant mechanisms for anaphase chromosome movements: crane-fly spermatocyte spindles normally use actin filaments but also can function without them.
    Protoplasma, 2005, Volume: 225, Issue:3-4

    Actin inhibitors block or slow anaphase chromosome movements in crane-fly spermatocytes, but stopping of movement is only temporary; we assumed that cells adapt to loss of actin by switching to mechanism(s) involving only microtubules. To test this, we produced actin-filament-free spindles: we added latrunculin B during prometaphase, 9-80 min before anaphase, after which chromosomes generally moved normally during anaphase. We confirmed the absence of actin filaments by staining with fluorescent phalloidin and by showing that cytochalasin D had no effect on chromosome movement. Thus, actin filaments are involved in normal anaphase movements, but in vivo, spindles nonetheless can function normally without them. We tested whether chromosome movements in actin-filament-free spindles arise via microtubules by challenging such spindles with anti-myosin drugs. Y-27632 and BDM (2,3-butanedione monoxime), inhibitors that affect myosin at different regulatory levels, blocked chromosome movement in normal spindles and in actin-filament-free spindles. We tested whether BDM has side effects on microtubule motors. BDM had no effect on ciliary and sperm motility or on ATPase activity of isolated ciliary axonemes, and thus it does not directly block dynein. Nor does it block kinesin, assayed by a microtubule sliding assay. BDM could conceivably indirectly affect these microtubule motors, though it is unlikely that it would have the same side effect on the motors as Y-27632. Since BDM and Y-27632 both affect chromosome movement in the same way, it would seem that both affect spindle myosin; this suggests that spindle myosin interacts with kinetochore microtubules, either directly or via an intermediate component.

    Topics: Actin Cytoskeleton; Amides; Anaphase; Animals; Azepines; Chromosomes; Diacetyl; Diptera; Drosophila melanogaster; Heterocyclic Compounds, 4 or More Rings; Locusta migratoria; Male; Naphthalenes; Pyridines; Sea Urchins; Spermatocytes; Spindle Apparatus

2005