biocytin has been researched along with flufenamic acid in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (25.00) | 29.6817 |
2010's | 3 (75.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Isa, T; Yamashita, T | 1 |
Ibáñez-Sandoval, O; Koós, T; Shah, F; Tecuapetla, F; Tepper, JM; Unal, B | 1 |
Ohtubo, Y; Seto, Y; Takeuchi, K; Yoshii, K | 1 |
Baccei, ML; Li, J | 1 |
4 other study(ies) available for biocytin and flufenamic acid
Article | Year |
---|---|
Fulfenamic acid sensitive, Ca(2+)-dependent inward current induced by nicotinic acetylcholine receptors in dopamine neurons.
Topics: Acetates; Animals; Animals, Newborn; Anti-Inflammatory Agents, Non-Steroidal; Anticonvulsants; Atropine; Calcium; Carbachol; Chelating Agents; Chlorides; Cholinergic Agonists; Dopamine; Dose-Response Relationship, Drug; Drug Interactions; Egtazic Acid; Electric Conductivity; Flufenamic Acid; Glutamic Acid; In Vitro Techniques; Lactones; Lysine; Mecamylamine; Membrane Potentials; Muscarinic Antagonists; Neurons; Nicotinic Antagonists; Patch-Clamp Techniques; Phenytoin; Rats; Rats, Wistar; Receptors, Nicotinic; Sesquiterpenes; Substantia Nigra; Ventral Tegmental Area | 2003 |
Electrophysiological and morphological characteristics and synaptic connectivity of tyrosine hydroxylase-expressing neurons in adult mouse striatum.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Analysis of Variance; Animals; Anti-Inflammatory Agents; Bicuculline; Calcium Channel Blockers; Cardiovascular Agents; Cell Count; Colchicine; Corpus Striatum; Electric Stimulation; Excitatory Amino Acid Antagonists; Flufenamic Acid; GABA Antagonists; Green Fluorescent Proteins; In Vitro Techniques; Lysine; Mice; Mice, Transgenic; Neural Pathways; Neurons; Nimodipine; Patch-Clamp Techniques; Pyrimidines; Synapses; Synaptic Transmission; Time Factors; Tubulin Modulators; Tyrosine 3-Monooxygenase; Vesicular Monoamine Transport Proteins | 2010 |
Dye-permeable, voltage-gated channel on mouse fungiform taste bud cells.
Topics: 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Animals; Biophysics; Carbenoxolone; Electric Stimulation; Flufenamic Acid; Fluorescent Dyes; Gene Expression Regulation; Ion Channel Gating; Isoquinolines; Lysine; Membrane Potentials; Mice; Neural Inhibition; Phospholipase C beta; Potassium Channel Blockers; Sensory Receptor Cells; Synaptosomal-Associated Protein 25; Taste Buds; Tetraethylammonium; Time Factors | 2011 |
Pacemaker neurons within newborn spinal pain circuits.
Topics: Action Potentials; Age Factors; Amino Acids; Analysis of Variance; Animals; Animals, Genetically Modified; Animals, Newborn; Calcium; Calcium Channel Blockers; Chelating Agents; Chi-Square Distribution; Egtazic Acid; Excitatory Amino Acid Antagonists; Flufenamic Acid; Glutamate Decarboxylase; Glutamic Acid; Green Fluorescent Proteins; In Vitro Techniques; Lysine; Male; Nerve Net; Neural Pathways; Neurons; omega-Conotoxin GVIA; Patch-Clamp Techniques; Periaqueductal Gray; Periodicity; Potassium Channel Blockers; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Spinal Cord; Statistics, Nonparametric; Tetraethylammonium; Tetrodotoxin; Vesicular Glutamate Transport Protein 2 | 2011 |