bim-23a760 has been researched along with pasireotide* in 6 studies
6 review(s) available for bim-23a760 and pasireotide
Article | Year |
---|---|
Somatostatin receptor ligands and resistance to treatment in pituitary adenomas.
Somatostatin (SST), an inhibitory polypeptide with two biologically active forms SST14 and SST28, inhibits GH, prolactin (PRL), TSH, and ACTH secretion in the anterior pituitary gland. SST also has an antiproliferative effect inducing cell cycle arrest and apoptosis. Such actions are mediated through five G-protein-coupled somatostatin receptors (SSTR): SSTR1-SSTR5. In GH-secreting adenomas, SSTR2 expression predominates, and somatostatin receptor ligands (SRLs; octreotide and lanreotide) directed to SSTR2 are presently the mainstays of medical therapy. However, about half of patients show incomplete biochemical remission, but the definition of resistance per se remains controversial. We summarize here the determinants of SRL resistance in acromegaly patients, including clinical, imaging features as well as molecular (mutations, SSTR variants, and polymorphisms), and histopathological (granulation pattern, and proteins and receptor expression) predictors. The role of SSTR5 may explain the partial responsiveness to SRLs in patients with adequate SSTR2 density in the cell membrane. In patients with ACTH-secreting pituitary adenomas, i.e. Cushing's disease (CD), SSTR5 is the most abundant receptor expressed and tumors show low SSTR2 density due to hypercortisolism-induced SSTR2 down-regulation. Clinical studies with pasireotide, a multireceptor-targeted SRL with increased SSTR5 activity, lead to approval of pasireotide for treatment of patients with CD. Other SRL delivery modes (oral octreotide), multireceptor-targeted SRL (somatoprim) or chimeric compounds targeting dopamine D2 receptors and SSTR2 (dopastatin), are briefly discussed. Topics: Adenoma; Adrenocorticotropic Hormone; Apoptosis; Cell Cycle Checkpoints; Dopamine; Drug Resistance, Neoplasm; Hormones; Human Growth Hormone; Humans; Ligands; Pituitary Neoplasms; Prolactin; Receptors, Somatostatin; Signal Transduction; Somatostatin; Thyrotropin | 2014 |
Somatostatin receptors: from signaling to clinical practice.
Somatostatin is a peptide with a potent and broad antisecretory action, which makes it an invaluable drug target for the pharmacological management of pituitary adenomas and neuroendocrine tumors. Somatostatin receptors (SSTR1, 2A and B, 3, 4 and 5) belong to the G protein coupled receptor family and have a wide expression pattern in both normal tissues and solid tumors. Investigating the function of each SSTR in several tumor types has provided a wealth of information about the common but also distinct signaling cascades that suppress tumor cell proliferation, survival and angiogenesis. This provided the rationale for developing multireceptor-targeted somatostatin analogs and combination therapies with signaling-targeted agents such as inhibitors of the mammalian (or mechanistic) target of rapamycin (mTOR). The ability of SSTR to internalize and the development of rabiolabeled somatostatin analogs have improved the diagnosis and treatment of neuroendocrine tumors. Topics: Animals; Carcinoma, Neuroendocrine; Cell Proliferation; Dopamine; Humans; Octreotide; Peptides, Cyclic; Radiopharmaceuticals; Receptors, Somatostatin; Signal Transduction; Somatostatin; TOR Serine-Threonine Kinases | 2013 |
Pituitary tumors in 2010: a new therapeutic era for pituitary tumors.
Topics: Acromegaly; Clinical Trials as Topic; Dopamine; Humans; Models, Biological; Pituitary ACTH Hypersecretion; Pituitary Neoplasms; Somatostatin | 2011 |
[Role of somatostatin receptor ligands in the treatment of acromegaly--literature review].
Acromegaly is a rare disease with typical clinical manifestations. Untreated acromegaly carries a 2-4-fold increase in mortality in long-term outcome. The goal of treatment is double, including biochemical control of the disease (normalization of serum IGF1 levels compared to age and gender matched controls, GH levels below 1 ng/ml after oral glucose load, or random GH below 2.5 ng/ml) and control of the tumor mass. The therapeutic modalities currently available for the treatment of acromegaly are: surgery, medical therapy, radiation therapy and their combinations. The cornerstones of medical therapy in acromegaly are the somatostatin receptor ligands due to their effectiveness in controlling GH excess in 60-70 % of patients and their beneficial effects on tumor volume. Somatostatin analogues have an established role as adjuvant therapy after non-curative surgery, and evidence suggests their use as primary treatment for selected patients. The long-term use of somatostatin receptor ligands is safe and they are well tolerated. Future medical therapy consists of pasireotide, a novel, universal somatostatin receptor agonist, and a new class of drugs named dopastatins. The latter so-called chimeric molecules have strong affinity for somatostatin receptors and dopamine-2 receptors, resulting in a more effective blocking of GH secretion, according to preliminary data. The authors of this paper review the current medical therapy of acromegaly, focusing on the role of somatostatin receptor ligands. Topics: Acromegaly; Adenoma; Case-Control Studies; Dopamine; Drug Administration Schedule; Female; Human Growth Hormone; Humans; Ligands; Male; Pituitary Neoplasms; Receptors, Somatostatin; Somatostatin | 2011 |
Novel medical therapies for pituitary tumors.
Despite considerable progress, there is still no medical treatment available for some kinds of pituitary tumors, in particular hormone inactive adenomas and corticotroph pituitary tumors. Surgical removal or at least debulking of the tumor is the only option to treat these kinds of tumors apart from rarely applied radiotherapy. Moreover, treatment resistance is present in a considerable proportion of patients bearing pituitary tumors, for which medical treatment regimens are already available (prolactinomas, somatotroph adenomas). Thus, novel or improved medical treatment strategies would be desirable. Here, we summarize preclinical and clinical findings about the hormone and growth-suppressive action of various drugs, which will probably lead to novel future medical treatment concepts for pituitary tumors. Topics: Dopamine; Dopamine Agonists; Humans; Interferon-gamma; Pituitary Neoplasms; Somatostatin; Tretinoin | 2010 |
Current therapy and drug pipeline for the treatment of patients with acromegaly.
Acromegaly is a multisystem disease resulting from chronic exposure to supraphysiological levels of growth hormone (GH), and is associated with significant morbidity and excess mortality. The etiology is almost exclusively an underlying pituitary adenoma. Current therapeutic interventions include surgery, radiotherapy, and medical therapy.. Despite surgery, around 50% of patients fail to achieve the biochemical targets shown to correlate with normalization of mortality rates. Radiotherapy is efficacious in controlling tumor growth and GH secretion; still, achievement of biochemical targets may take up to a decade and a number of safety issues have been raised with this treatment modality. Medical therapy, therefore, has an important role as adjuvant therapy in patients who fail to achieve control with surgery, or while awaiting the effects of radiotherapy to be realized. Furthermore, medical therapy is increasingly being used as primary therapy. Current medical therapies include dopaminergic agonists, somatostatin analogs, and GH receptor (GHR) antagonists. Dopaminergic agonists achieve biochemical targets in up to 30% of patients, and somatostatin analogs in around 60%. The currently available GHR antagonist pegvisomant effectively controls insulin-like growth factor-I levels in over 90% of patients; however, it has no effect on the tumor itself and has considerable financial implications. Research into optimizing the somatostatin and dopaminergic systems has led to promising advances in agonist development. Moieties with selectivity for various combinations of somatostatin receptor subtype receptors have been examined, along with molecules that additionally show high affinity for the dopaminergic D2 receptor. Of the molecules studied in vitro, only pasireotide (SOM230) and BIM-23A760 are currently undergoing further development. Other innovations to improve convenience of currently available drugs are also being investigated.. Significant advances in under standing of the somatostatin and dopaminergic system have aided drug development. This may lead to new clinically available therapies enabling control of acromegaly in a larger proportion of patients, and at an earlier stage in their disease management. Topics: Acromegaly; Adenoma; Combined Modality Therapy; Dopamine; Dopamine Agonists; Drug Discovery; Drug Evaluation; Human Growth Hormone; Humans; Insulin-Like Growth Factor Binding Protein 1; Pituitary Neoplasms; Radiotherapy; Receptors, Dopamine D2; Receptors, Somatotropin; Somatostatin; Treatment Outcome | 2009 |