bifenthrin has been researched along with cyfluthrin* in 22 studies
22 other study(ies) available for bifenthrin and cyfluthrin
Article | Year |
---|---|
Pyrethroid Exposure Reduces Growth and Development of Monarch Butterfly (Lepidoptera: Nymphalidae) Caterpillars.
Insecticide exposure has been identified as a contributing stressor to the decline in the North American monarch butterfly Danaus plexippus L. (Lepidoptera: Nymphalidae) population. Monarch toxicity data are currently limited and available data focuses on lethal endpoints. This study examined the 72-h toxicity of two pyrethroid insecticides, bifenthrin and β-cyfluthrin, and their effects on growth and diet consumption. The toxicity of bifenthrin to caterpillars was lower than β-cyfluthrin after 72 h. Survival was the most sensitive endpoint for bifenthrin, but diet consumption and caterpillar growth were significantly reduced at sublethal levels of β-cyfluthrin. Using AgDRIFT spray drift assessment, the aerial application of bifenthrin or β-cyfluthrin is predicted to pose the greatest risk to fifth-instar caterpillars, with lethal insecticide deposition up to 28 m for bifenthrin and up to 23 m for β-cyfluthrin from treated edges of fields. Low boom ground applications are predicted to reduce distances of lethal insecticide exposure to 2 m from the treated field edge for bifenthrin and β-cyfluthrin. Growth and survival of fifth-instar monarch caterpillars developing within the margins of a treated field may be significantly impacted following foliar applications of bifenthrin or β-cyfluthrin. These findings provide evidence that pyrethroid insecticides commonly used for soybean pest control are a potential risk to monarch caterpillars in agricultural landscapes. Topics: Animals; Butterflies; Crop Protection; Feeding Behavior; Insecticides; Larva; Nitriles; Pyrethrins | 2021 |
Development and Application of a Life-Stage Physiologically Based Pharmacokinetic (PBPK) Model to the Assessment of Internal Dose of Pyrethroids in Humans.
To address concerns around age-related sensitivity to pyrethroids, a life-stage physiologically based pharmacokinetic (PBPK) model, supported by in vitro to in vivo extrapolation (IVIVE) was developed. The model was used to predict age-dependent changes in target tissue exposure of 8 pyrethroids; deltamethrin (DLM), cis-permethrin (CPM), trans-permethrin, esfenvalerate, cyphenothrin, cyhalothrin, cyfluthrin, and bifenthrin. A single model structure was used based on previous work in the rat. Intrinsic clearance (CLint) of each individual cytochrome P450 or carboxylesterase (CES) enzyme that are active for a given pyrethroid were measured in vitro, then biologically scaled to obtain in vivo age-specific total hepatic CLint. These IVIVE results indicate that, except for bifenthrin, CES enzymes are largely responsible for human hepatic metabolism (>50% contribution). Given the high efficiency and rapid maturation of CESs, clearance of the pyrethroids is very efficient across ages, leading to a blood flow-limited metabolism. Together with age-specific physiological parameters, in particular liver blood flow, the efficient metabolic clearance of pyrethroids across ages results in comparable to or even lower internal exposure in the target tissue (brain) in children than that in adults in response to the same level of exposure to a given pyrethroid (Cmax ratio in brain between 1- and 25-year old = 0.69, 0.93, and 0.94 for DLM, bifenthrin, and CPM, respectively). Our study demonstrated that a life-stage PBPK modeling approach, coupled with IVIVE, provides a robust framework for evaluating age-related differences in pharmacokinetics and internal target tissue exposure in humans for the pyrethroid class of chemicals. Topics: Carboxylesterase; Cytochrome P-450 Enzyme System; Dose-Response Relationship, Drug; Humans; Kinetics; Liver; Microsomes, Liver; Models, Biological; Nitriles; Permethrin; Pharmacokinetics; Pyrethrins | 2020 |
Metabolism of bifenthrin, β-cyfluthrin, λ-cyhalothrin, cyphenothrin and esfenvalerate by rat and human cytochrome P450 and carboxylesterase enzymes.
The metabolism of bifenthrin (BIF), β-cyfluthrin (CYFL), λ-cyhalothrin (CYHA), cyphenothrin (CYPH) and esfenvalerate (ESF) was studied in liver microsomes, liver cytosol and plasma from male Sprague-Dawley rats aged 90, 21 and 15 days and from adult humans. Pyrethroid metabolism was also studied with some human expressed cytochrome P450 (CYP) and carboxylesterase (CES) enzymes. All five pyrethroids were metabolised by adult (90 day old) rat hepatic microsomal CYP and CES enzymes and by cytosolic CES enzymes. The pyrethroids were also metabolised by human liver microsomes and cytosol. Some species differences were observed. Pyrethroid metabolism by cytosolic CES enzymes contributes to the overall hepatic clearance of these compounds. CYFL, CYHA, CYPH and ESF were metabolised by rat plasma CES enzymes, whereas none of the pyrethroids were metabolised by human plasma. This study demonstrates that the ability of male rats to metabolise these pyrethroids by hepatic CYP and CES enzymes and plasma CES enzymes increases with age. In all instances, apparent intrinsic clearance values were lower in 15 than in 90 day old rats. All pyrethroids were metabolised by some of the human expressed CYP enzymes studied and apart from BIF were also metabolised by CES enzymes. Topics: Animals; Carboxylesterase; Cytochrome P-450 Enzyme System; Humans; Male; Microsomes, Liver; Nitriles; Pyrethrins; Rats | 2020 |
A Comparison of Different Statistical Methods for Addressing Censored Left Data in Temporal Trends Analysis of Pyrethroids in a California Stream.
This study compared four different statistical methods, involving six estimation procedures, for addressing censored left data in measuring temporal trends of eight different pyrethroids measured in sediment from a 10-year data set in a residential California stream (Pleasant Grove Creek). The statistical methods used were: the Kaplan-Meier (km) method; the robust regression on order statistics (ros using normal and log normal distributions rosln); the maximum likelihood estimation (mlen using normal and log normal distributions mleln); and a substitution method (sub) using ½ the detection limit. For five of the eight pyrethroids (bifenthrin, cyfluthrin, cypermethrin, lambda-cyhalothrin, and permethrin), the six statistical methods generally agree, with one exception, that the data set exhibit significant declining trends. In the case of bifenthrin, the slight disagreement among statistical methods only occurred for the mleln estimate that did not show a significant declining trend, whereas the other five methods did. For deltamethrin, esfenvalerate, and fenpropathrin, all six statistical methods were in agreement showing no significant trends. Possible reasons for declining sediment concentrations of pyrethroids in Pleasant Grove Creek are urban label changes effective in 2012-2015 that reduced residential use, variable annual rainfall, and more responsible homeowner use based on outreach/education programs. Topics: Animals; California; Environmental Monitoring; Insecticides; Nitriles; Permethrin; Pyrethrins; Rivers; Water Pollutants, Chemical | 2020 |
Are there fitness costs of adaptive pyrethroid resistance in the amphipod, Hyalella azteca?
Pyrethroid-resistant Hyalella azteca with voltage-gated sodium channel mutations have been identified at multiple locations throughout California. In December 2013, H. azteca were collected from Mosher Slough in Stockton, CA, USA, a site with reported pyrethroid (primarily bifenthrin and cyfluthrin) sediment concentrations approximately twice the 10-d LC50 for laboratory-cultured H. azteca. These H. azteca were shipped to Southern Illinois University Carbondale and have been maintained in pyrethroid-free culture since collection. Even after 22 months in culture, resistant animals had approximately 53 times higher tolerance to permethrin than non-resistant laboratory-cultured H. azteca. Resistant animals held in culture also lacked the wild-type allele at the L925 locus, and had non-synonymous substitutions that resulted in either a leucine-isoleucine or leucine-valine substitution. Additionally, animals collected from the same site nearly three years later were again resistant to the pyrethroid permethrin. When resistant animals were compared to non-resistant animals, they showed lower reproductive capacity, lower upper thermal tolerance, and the data suggested greater sensitivity to, 4, 4'-dichlorodiphenyltrichloroethane (DDT), copper (II) sulfate, and sodium chloride. Further testing of the greater heat and sodium chloride sensitivity of the resistant animals showed these effects to be unrelated to clade association. Fitness costs associated with resistance to pyrethroids are well documented in pest species (including mosquitoes, peach-potato aphids, and codling moths) and we believe that H. azteca collected from Mosher Slough also have fitness costs associated with the developed resistance. Topics: Amphipoda; Animals; Drug Resistance; Female; Insecticides; Male; Nitriles; Permethrin; Pyrethrins; Water Pollutants, Chemical | 2018 |
Pyrethroids in chicken eggs from commercial farms and home production in Rio de Janeiro: Estimated daily intake and diastereomeric selectivity.
Topics: Animals; Brazil; Chickens; Diet; Eggs; Environmental Exposure; Farms; Gas Chromatography-Mass Spectrometry; Humans; Insecticides; Nitriles; Permethrin; Pyrethrins | 2017 |
Neurodevelopmental consequences of gestational and lactational exposure to pyrethroids in rats.
Indiscriminate use of pyrethroids has raised serious health related concerns, especially about their effects on children. The present study was designed to assess the developmental neurotoxicity of two pyrethroids; bifenthrin (BIF) and β-cyfluthrin (CYF) administered at 1/15 of LD Topics: Animals; Animals, Newborn; Behavior, Animal; Brain; Female; Lactation; Male; Maternal Exposure; Motor Activity; Neurotoxicity Syndromes; Nitriles; Pregnancy; Prenatal Exposure Delayed Effects; Pyrethrins; Rats, Wistar; Weaning | 2016 |
Impact of five insecticides used to control citrus pests on the parasitoid Ageniaspis citricola Longvinovskaya (Hymenoptera: Encyrtidae).
The parasitoid Ageniaspis citricola Longvnovskaya is a main biological control agent of the citrus leafminer Phyllocnistis citrella Stainton, an insect pest that causes considerable damage to citrus worldwide. However, the use of pesticides to control arthropod pests can reduce the effectiveness of parasitoids and disrupt integrated pest management in citrus groves. This study evaluated the impact on A. citricola of five insecticides that are used to control arthropod pests in citrus. Our results indicated that imidacloprid, chlorpyrifos, bifenthrin and β-cyfluthrin were harmful (mortality >89 %) to A. citricola adults; whereas abamectin did not cause significant mortality and was considered harmless to the parasitoid. In addition to causing high mortality, imidacloprid and bifenthrin were considered moderately persistent, because they caused <25 % mortality to 17 and 24 days after spraying (DAS), respectively. Chlorpyrifos and β-cyfluthrin were considered slightly persistent (mortality <25 %, 7 DAS). Although abamectin was considered harmless to A. citricola adults, had a short life (mortality <25 %, 3 DAS), and did not significantly affect the parasitism rate, the number and viability of pupae, or the longevity of A. citricola, this insecticide significantly reduced the proportion of females in the progeny compared to the control treatment. Therefore, semi-field and field studies that consider demographic parameters are needed to evaluate the impacts of these insecticides on the A. citricola parasitoid. Topics: Animals; Chlorpyrifos; Citrus; Hymenoptera; Imidazoles; Insecticides; Ivermectin; Lepidoptera; Neonicotinoids; Nitriles; Nitro Compounds; Pest Control; Pyrethrins; Toxicity Tests | 2016 |
Residual Behaviors of Six Pesticides in Shiitake from Cultivation to Postharvest Drying Process and Risk Assessment.
The dissipation of six pesticides (carbendazim, thiabendazole, procymidone, bifenthrin, λ-cyhalothrin, and β-cyfluthrin) in shiitakes from cultivation to postharvest drying process was investigated, and the dietary exposure risk was estimated thereafter. The field trial study indicates that the half-lives of carbendazim, thiabendazole, and procymidone were much shorter than those of bifenthrin, λ-cyhalothrin, and β-cyfluthrin. Furthermore, the effects of two drying processes on the residues and processing factors (PFs) were investigated. The results showed that hot-air drying resulted in higher residues than sunlight exposure drying. Both drying processes led to pesticide residue concentration (with PF > 1), except for thiabendazole upon sunlight exposure treatment. The estimated daily intakes (EDIs) ranged from 0.06% of the acceptable daily intake (ADI) for thiabendazole to 42.43% of the ADI for procymidone. The results show that the six pesticide residues in dried shiitakes are still within acceptable levels for human consumption on the basis of a dietary risk assessment. Topics: Benzimidazoles; Bridged Bicyclo Compounds; Carbamates; Diet; Environmental Monitoring; Food Contamination; Humans; Nitriles; Pesticide Residues; Pyrethrins; Reproducibility of Results; Risk Assessment; Shiitake Mushrooms; Thiabendazole | 2016 |
Elevated expression of esterase and cytochrome P450 are related with lambda-cyhalothrin resistance and lead to cross resistance in Aphis glycines Matsumura.
A resistant strain of the Aphis glycines Matsumura (CRR) has developed 76.67-fold resistance to lambda-cyhalothrin compared with the susceptible (CSS) strain. Synergists piperonyl butoxide (PBO), S,S,S-Tributyltrithiophosphate (DEF) and triphenyl phosphate (TPP) dramatically increased the toxicity of lambda-cyhalothrin to the resistant strain. Bioassay results indicated that the CRR strain had developed high levels of cross-resistance to chlorpyrifos (11.66-fold), acephate (8.20-fold), cypermethrin (53.24-fold), esfenvalerate (13.83-fold), cyfluthrin (9.64-fold), carbofuran (14.60-fold), methomyl (9.32-fold) and bifenthrin (4.81-fold), but did not have cross-resistance to chlorfenapyr, imidacloprid, diafenthiuron, abamectin. The transcriptional levels of CYP6A2-like, CYP6A14-like and cytochrome b-c1 complex subunit 9-like increased significantly in the resistant strain than that in the susceptible. Similar trend were observed in the transcripts and DNA copy number of CarE and E4 esterase. Overall, these results demonstrate that increased esterase hydrolysis activity, combined with elevated cytochrome P450 monooxygenase detoxicatication, plays an important role in the high levels of lambda-cyhalothrin resistance and can cause cross-resistance to other insecticides in the CRR strain. Topics: Animals; Aphids; Cytochrome P-450 Enzyme System; Esterases; Insect Proteins; Insecticide Resistance; Insecticides; Nitriles; Pyrethrins | 2015 |
A comparison of the sublethal and lethal toxicity of four pesticides in Hyalella azteca and Chironomus dilutus.
Laboratory toxicity testing is the primary tool used for surface water environmental risk assessment; however, there are critical information gaps regarding the sublethal effects of pesticides. In 10-day exposures, we assessed the lethal and sublethal (motility and growth) toxicities of four commonly used pesticides, bifenthrin, permethrin, cyfluthrin, and chlorpyrifos, on two freshwater invertebrates, Chironomus dilutus and Hyalella azteca. Pyrethroids were more toxic than the organophosphate chlorpyrifos in both species. Bifenthrin was most toxic to H. azteca survival and growth. Cyfluthrin was most toxic to C. dilutus. However, cyfluthrin had the greatest effect on motility on both H. azteca and C. dilutus. The evaluated concentrations of chlorpyrifos did not affect C. dilutus motility or growth, but significantly impacted H. azteca growth. Motility served as the most sensitive endpoint in assessing sublethal effects at low concentrations for both species, while growth was a good indicator of toxicity for all four pesticides for H. azteca. The integration of sublethal endpoints in ambient water monitoring and pesticide regulation efforts could improve identification of low-level pesticide concentrations that may eventually cause negative effects on food webs and community structure in aquatic environments. Topics: Amphipoda; Animals; Chironomidae; Chlorpyrifos; Lethal Dose 50; Motor Activity; Nitriles; Permethrin; Pesticides; Pyrethrins; Risk Assessment; Water Pollutants, Chemical; Water Quality | 2015 |
Mechanism of Resistance Acquisition and Potential Associated Fitness Costs in Amyelois transitella (Lepidoptera: Pyralidae) Exposed to Pyrethroid Insecticides.
The polyphagous navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), is the most destructive pest of nut crops, including almonds and pistachios, in California orchards. Management of this insect has typically been a combination of cultural controls and insecticide use, with the latter increasing substantially along with the value of these commodities. Possibly associated with increased insecticide use, resistance has been observed recently in navel orangeworm populations in Kern County, California. In studies characterizing a putatively pyrethroid-resistant strain (R347) of navel orangeworm, susceptibility to bifenthrin and β-cyfluthrin was compared with that of an established colony of susceptible navel orangeworm. Administration of piperonyl butoxide and S,S,S-tributyl phosphorotrithioate in first-instar feeding bioassays with the pyrethroids bifenthrin and β-cyfluthrin produced synergistic effects and demonstrated that cytochrome P450 monooxygenases and carboxylesterases contribute to resistance in this population. Resistance is therefore primarily metabolic and likely the result of overexpression of specific cytochrome P450 monooxygenases and carboxylesterase genes. Resistance was assessed by median lethal concentration (LC50) assays and maintained across nine generations in the laboratory. Life history trait comparisons between the resistant strain and susceptible strain revealed significantly lower pupal weights in resistant individuals reared on the same wheat bran-based artificial diet across six generations. Time to second instar was greater in the resistant strain than the susceptible strain, although overall development time was not significantly different between strains. Resistance was heritable and may have an associated fitness cost, which could influence the dispersal and expansion of resistant populations in nut-growing areas in California. Topics: Animals; California; Female; Genetic Fitness; Insecticide Resistance; Insecticides; Larva; Male; Moths; Nitriles; Organothiophosphates; Piperonyl Butoxide; Pupa; Pyrethrins | 2015 |
Predicted transport of pyrethroid insecticides from an urban landscape to surface water.
The authors developed a simple screening-level model of exposure of aquatic species to pyrethroid insecticides for the lower American River watershed (California, USA). The model incorporated both empirically derived washoff functions based on existing, small-scale precipitation simulations and empirical data on pyrethroid insecticide use and watershed properties for Sacramento County, California, USA. The authors calibrated the model to in-stream monitoring data and used it to predict daily river pyrethroid concentration from 1995 through 2010. The model predicted a marked increase in pyrethroid toxic units starting in 2000, coincident with an observed watershed-wide increase in pyrethroid use. After 2000, approximately 70% of the predicted total toxic unit exposure in the watershed was associated with the pyrethroids bifenthrin and cyfluthrin. Pyrethroid applications for aboveground structural pest control on the basis of suspension concentrate categorized product formulations accounted for greater than 97% of the predicted total toxic unit exposure. Projected application of mitigation strategies, such as curtailment of structural perimeter band and barrier treatments as recently adopted by the California Department of Pesticide Regulation, reduced predicted total toxic unit exposure by 84%. The model also predicted that similar reductions in surface-water concentrations of pyrethroids could be achieved through a switch from suspension concentrate-categorized products to emulsifiable concentrate-categorized products without restrictions on current-use practice. Even with these mitigation actions, the predicted concentration of some pyrethroids would continue to exceed chronic aquatic life criteria. Topics: California; Environmental Monitoring; Insecticides; Nitriles; Pyrethrins; Rivers; Water Movements; Water Pollutants, Chemical | 2013 |
Pyrethroid insecticides in bed sediments from urban and agricultural streams across the United States.
Pyrethroid insecticides are hydrophobic compounds that partition to streambed sediments and have been shown to cause toxicity to non-target organisms; their occurrence is well documented in parts of California, but there have been limited studies in other urban and agricultural areas across the United States. To broaden geographic understanding of pyrethroid distributions, bed sediment samples were collected and analyzed from 36 streams in 25 states, with about 2/3 of the sites in urban areas and 1/3 in agricultural areas. At least one pyrethroid (of the 14 included in the analysis) was detected in 78% of samples. Seven pyrethroids were detected in one or more samples. Bifenthrin was the most frequently detected (58% of samples), followed by permethrin (31%), resmethrin (17%), and cyfluthrin (14%). The other three detected pyrethroids (cyhalothrin, cypermethrin and delta/tralomethrin) were found in two or fewer of the samples. Concentrations ranged from 0.3 to 180 ng g(-1) dry weight. The number of pyrethroids detected were higher in the urban samples than in the agricultural samples, but the highest concentrations of individual pyrethroids were split between urban and agricultural sites. The pyrethroids detected in the agricultural areas generally followed use patterns. Predicted toxicity was greater for urban areas and attributed to bifenthrin, cyfluthrin and cypermethrin, while in agricultural areas the toxicity was mainly attributed to bifenthrin. Topics: Agriculture; Cities; Environmental Monitoring; Geologic Sediments; Insecticides; Nitriles; Permethrin; Pyrethrins; Rivers; United States; Water Pollutants, Chemical; Water Pollution, Chemical | 2012 |
Pyrethroids in Southern California coastal sediments.
Little is known about pyrethroid fate and effects in estuarine and marine environments. In the present study, the extent and magnitude of pyrethroids in coastal embayments of the Southern California Bight (SCB), USA, were assessed. Using a stratified probabilistic design, 155 sediment samples were collected from four embayment habitats (estuaries, marinas, open bays, and ports) and analyzed for eight common-use pyrethroids. Total pyrethroid concentrations ranged from less than 0.5 to 230 µg/kg dry weight (area-weighted mean concentration=5.1 ± 3.1 µg/kg) and were detected in 35% of the total SCB embayment area. Estuaries and marinas had the greatest areal extent of detectable concentrations (up to 65%) and the greatest area-weighted mean concentrations (22.1 ± 26.5 µg/kg). Sites with the greatest pyrethroid concentrations were located near sources of runoff from urban watersheds. Bifenthrin and cyfluthrin were detected in 32 and 15% of all samples, respectively, whereas the other six pyrethroids were detected in ≤ 5% of samples. Permethrin and bifenthrin had the highest concentrations at 132 and 65 µg/kg. Toxic units estimated for the marine amphipod Eohaustorius estuarius ranged from 0 to 5.8, exceeding unity in 9 and 32% of the total and estuary habitat areas, respectively, and were not correlated with mortality, suggesting that other factors (e.g., co-occurring contaminants, reduced bioavailability) may affect the predictive capability using a single test species. Topics: Amphipoda; Animals; Bays; California; Ecosystem; Estuaries; Geologic Sediments; Insecticides; Nitriles; Permethrin; Pyrethrins; Toxicity Tests; Water Pollutants, Chemical | 2012 |
Susceptibility of adult mosquitoes to insecticides in aqueous sucrose baits.
Mosquitoes characteristically feed on plant-derived carbohydrates and honeydew just after emergence and intermittently during their lives. Development of toxic baits focusing on this carbohydrate-seeking behavior may potentially contribute to localized control. In the present study, ten insecticides were fed to female Culex quinquefasciatus, Anopheles quadrimaculatus, and Aedes taeniorhynchus in a 10% sucrose solution. Active ingredients representative of five classes of insecticides (pyrethroids, phenylpyroles, pyrroles, neonicotinoids, and macrocyclic lactones) were selected for comparison with commercial formulations used to facilitate incorporation of active ingredients into aqueous sucrose solutions. Sucrose as a phagostimulant significantly enhanced mortality to toxicants. In general, the most effective active ingredients were fipronil, deltamethrin and imidacloprid, followed by spinosad, thiamethoxam, bifenthrin, permethrin, and cyfluthrin. The least effective ingredients were chlorfenapyr and ivermectin. For some of the ingredients tested, Cx. quinquefasciatus was the least susceptible species. One-day-old male Cx. quinquefasciatus were more susceptible than females; however, no differences existed between one- and seven-day-old mosquitoes. There were no differences in susceptibility between unfed and gravid ten-day-old female Cx. quinquefasciatus to bifenthrin. In conclusion, several pesticides from different classes of compounds have potential for use in development of toxic baits for mosquitoes. Topics: Aedes; Animals; Anopheles; Culex; Culicidae; Drug Combinations; Female; Imidazoles; Insecticides; Ivermectin; Macrocyclic Compounds; Macrolides; Male; Mosquito Control; Neonicotinoids; Nitriles; Nitro Compounds; Oxazines; Permethrin; Pyrethrins; Pyrroles; Sucrose; Thiamethoxam; Thiazoles | 2011 |
Effect of dissolved organic carbon on sorption of pyrethroids to sediments.
Despite their strong hydrophobicity, recent studies showed widespread occurrence of pyrethroid in downstream surface waters bodies. In this work, the effect of dissolved organic carbon (DOC) on the sorption and desorption of pyrethroids in sediment was evaluated to understand the role of DOC in facilitating pyrethroid transport. Presence of DOC from three sources at 38 ± 2 mg L⁻¹ in the aqueous phase decreased pesticide sorption to a sediment by 1.7 to 38.9 times and increased their desorption by 1.2 to 41.4 times. The effect on pyrethroid sorption to the sediment was linear. In addition, interactions between DOC and pyrethroids, when taking place prior to the contact with sediment, decreased sorption of some pyrethroids even further, implying that DOC-pyrethroid complexs were relatively stable in solution. DOC sources with higher contents of carboxylic and phenolic groups were found to have a higher potential to associate with pyrethroids. The DOC-water partition coefficients (K(DOC)) obtained by solid-phase microextraction measurement were significantly correlated (P < 0.01) with K(d) values measured for the sediment. These results provide evidence that DOC increases the distribution of pyrethroids from the sediment to the solution phase and plays an important role in mobilizing pyrethroids in runoff and surface streams. Topics: Carbon; Fresh Water; Geologic Sediments; Nitriles; Pyrethrins; Water Pollutants, Chemical | 2010 |
Residential runoff as a source of pyrethroid pesticides to urban creeks.
Pyrethroid pesticides occur in urban creek sediments at concentrations acutely toxic to sensitive aquatic life. To better understand the source of these residues, runoff from residential neighborhoods around Sacramento, California was monitored over the course of a year. Pyrethroids were present in every sample. Bifenthrin, found at up to 73 ng/L in the water and 1211 ng/g on suspended sediment, was the pyrethroid of greatest toxicological concern, with cypermethrin and cyfluthrin of secondary concern. The bifenthrin could have originated either from use by consumers or professional pest controllers, though the seasonal pattern of discharge from the drain was more consistent with professional use as the dominant source. Stormwater runoff was more important than dry season irrigation runoff in transporting pyrethroids to urban creeks. A single intense storm was capable of discharging as much bifenthrin to an urban creek in 3h as that discharged over 6 months of irrigation runoff. Topics: Animals; California; Cities; Environmental Monitoring; Geologic Sediments; Humans; Nitriles; Particulate Matter; Pesticides; Pyrethrins; Rain; Rivers; Seasons; Toxicity Tests, Acute; Water Pollutants, Chemical | 2009 |
Separation and aquatic toxicity of enantiomers of synthetic pyrethroid insecticides.
Synthetic pyrethroid insecticides are chiral compounds with multiple asymmetric positions. In this study, isomers of four commonly used pyrethroids were separated at the enantiomeric level by enantioselective high-performance liquid chromatography (HPLC), and differences between enantiomers in aquatic toxicity were characterized using individual isomers. Isomers of cis-bifenthrin and permethrin were completely resolved on a Sumichiral OA-2500-I column. All eight isomers of cypermethrin and cyfluthrin were completely separated on two chained Chirex 00G-3019-DO columns. Great differences were found between enantiomers in the acute toxicity to aquatic invertebrates Ceriodaphnia dubia or Daphnia magna. In cis-bifenthrin (cis-BF) and cis-permethrin (cis-PM), the 1R-cis isomer was 15-38 times more active than the 1S-cis enantiomer, while in trans-PM, the 1R-trans isomer was substantially more toxic than the 1S-trans enantiomer. In cypermethrin or cyfluthrin, two of the eight isomers, 1R-cis-alphaS and 1R-trans-alphaS, contributed for almost all the toxicity in the racemate, while the other six enantiomers were inactive. These results suggest that significant enantioselectivity occurs for pyrethroids in aquatic toxicity, and such enantiomeric differences must be considered when evaluating ecological effects of pyrethroid insecticides. Topics: Animals; Chromatography, High Pressure Liquid; Cladocera; Daphnia; Ecosystem; Insecticides; Molecular Structure; Nitriles; Permethrin; Pyrethrins; Stereoisomerism; Water Pollutants, Chemical | 2005 |
Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA.
The use of pyrethroid insecticides is increasing for agriculture, commercial pest control, and residential consumer use. In addition, there is a trend toward the use of newer and more potent compounds. Little is known about the toxicity of sediment-associated pyrethroid residues to aquatic organisms, yet recent work has shown they commonly are found in aquatic sediments in the heavily agricultural Central Valley of California, USA. Minimal data exist on the sensitivity of standard sediment toxicity testing species to pyrethroids, despite two or more decades of agricultural use of these compounds. Sediment concentrations causing acute toxicity and growth impairment to the amphipod Hyalella azteca were determined for six pyrethroids in three sediments, ranging from 1.1 to 6.5% organic carbon (OC). In order of decreasing toxicity of sediment-associated residues, the compounds tested were bifenthrin (average 10-d median lethal concentration [LC50] = 0.18 microg/g OC), lambda-cyhalothrin (0.45 microg/g OC), deltamethrin (0.79 microg/g OC), esfenvalerate (0.89 microg/g OC), cyfluthrin (1.08 microg/g OC), and permethrin (4.87 microg/g OC). In a sediment containing about 1% OC, most pyrethroids, except permethrin, would be acutely toxic to H. azteca at concentrations of 2 to 10 ng/g dry weight, a concentration only slightly above current analytical detection limits. Growth typically was inhibited at concentrations below the LC50; animal biomass on average was 38% below controls when exposed to pyrethroid concentrations roughly one-third to one-half the LC50. Survival data are consistent with current theory that exposure occurs primarily via the interstitial water rather than the particulate phase. A reanalysis of previously reported field data using these toxicity data confirms that the compounds are exceeding concentrations acutely toxic to sensitive species in many agriculture-dominated water bodies. Topics: Amphipoda; Animals; Biomass; California; Carbon; Geologic Sediments; Lethal Dose 50; Nitriles; Organic Chemicals; Permethrin; Pesticides; Pyrethrins; Water Pollutants, Chemical | 2005 |
Effect of horizontal transfer of barrier insecticides to control Argentine ants (Hymenoptera: Formicidae).
Horizontal transfer of three contact insecticides, bifenthrin, beta-cyfluthrin, and fipronil, was tested in laboratory colonies. Donor ants were exposed for 1 min to insecticide-treated sand substrates and placed with unexposed ant colonies at two different temperatures. Mortality was monitored to compare the ability of donors to transfer lethal doses of these insecticides to untreated individuals. Treated donor insects, live or dead, were added into colonies to determine the importance of donor behavior on lethal transfer. Fipronil was readily transferable between individuals, resulting in high mortality rates. Bifenthrin and beta-cyfluthrin were less transferable, exhibiting moderate-to-low mortality rates similar to the controls. Greater mortality occurred at 27-29 degrees C than at 21-23 degrees C for bifenthrin, but not the other treatments or controls. Colony mortality did not significantly increase when adding live donors, suggesting that necrophoresis was probably an important donor behavior in addition to grooming and trophallaxis on horizontal transfer. Topics: Animals; Ants; Insect Control; Insecticides; Nitriles; Pyrazoles; Pyrethrins | 2004 |
Effect of delayed toxicity of chemical barriers to control Argentine ants (Hymenoptera: Formicidae).
Brief exposures of Argentine ants to four different insecticide treatments, bifenthrin, beta-cyfluthrin, bifenthrin + beta-cyfluthrin, and fipronil, were conducted to determine Kaplan-Meier product limit survivorship percentiles (SPs) at 21-23 and 27-29 degrees C. Bifenthrin, beta-cyfluthrin, and bifenthrin + beta-cyfluthrin provided rapid kill at 21-23 degrees C with SP10 values ranging from 11.2 to 33.7 min. Fipronil provided delayed toxicity at 21-23 degrees C with SP10 values ranging from 270 to 960 min. At 27-29 degrees C, all of the SP10 values significantly decreased. Field tests in which Argentine ants were induced to forage across insecticide-treated surfaces were used to determine the effect that speed of action has on foraging and recruitment ability, and whether these insecticides are repellent. The slower-acting fipronil allowed a greater amount of foraging and consequently a greater fraction of the colony to be exposed, whereas fast-acting bifenthrin, beta-cyfluthrin, and bifenthrin + beta-cyfluthrin inhibited recruitment, resulting in fewer ants being exposed and killed. Implications for controlling ants by using perimeter barrier treatments are discussed. Topics: Animals; Ants; Insect Control; Insect Repellents; Insecticides; Nitriles; Pyrazoles; Pyrethrins; Time Factors | 2004 |