bifenthrin has been researched along with butyl-phosphorotrithioate* in 4 studies
4 other study(ies) available for bifenthrin and butyl-phosphorotrithioate
Article | Year |
---|---|
Pyrethroid resistance in Phytoseiulus macropilis (Acari: Phytoseiidae): cross-resistance, stability and effect of synergists.
Phytoseiulus macropilis Banks (Acari: Phytoseiidae) is an effective predator of Tetranychus urticae Koch (Acari: Tetranychidae). The objectives of this research were to study the stability of fenpropathrin resistance and the cross-resistance relationships with different pyrethroids, and also to evaluate the effect of synergists [piperonyl butoxide (PBO), diethyl maleate (DEM) and S,S,S-tributyl phosphorotrithioate (DEF)] on fenpropathrin resistant and susceptible strains of this predaceous mite. The stability of fenpropathrin resistance was studied under laboratory conditions, using P. macropilis populations with initial frequencies of 75 and 50% of resistant mites. The percentages of fenpropathrin resistant mites were evaluated monthly for a period of up to 12 months. A trend toward decreased resistance frequencies was observed only during the first 3-4 months. After this initial decrease, the fenpropathrin resistance was shown to be stable, maintaining constant resistance frequencies (around 30%) until the end of the evaluation period. Toxicity tests carried out using fenpropathrin resistant and susceptible strains of P. macropilis indicated strong positive cross-resistance between fenpropathrin and the pyrethroids bifenthrin and deltamethrin. Bioassays with the synergists DEM, DEF and PBO were also performed. The maximum synergism ratio (SR = LC50 without synergist/LC50 with synergist) detected for the three evaluated synergists (PBO, DEM, DEF) was 5.86 (for DEF), indicating low influence of enzyme detoxification processes in fenpropathrin resistance. Topics: Acaricides; Animals; Drug Resistance; Drug Synergism; Maleates; Mites; Nitriles; Organothiophosphates; Piperonyl Butoxide; Pyrethrins | 2016 |
Mechanism of Resistance Acquisition and Potential Associated Fitness Costs in Amyelois transitella (Lepidoptera: Pyralidae) Exposed to Pyrethroid Insecticides.
The polyphagous navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), is the most destructive pest of nut crops, including almonds and pistachios, in California orchards. Management of this insect has typically been a combination of cultural controls and insecticide use, with the latter increasing substantially along with the value of these commodities. Possibly associated with increased insecticide use, resistance has been observed recently in navel orangeworm populations in Kern County, California. In studies characterizing a putatively pyrethroid-resistant strain (R347) of navel orangeworm, susceptibility to bifenthrin and β-cyfluthrin was compared with that of an established colony of susceptible navel orangeworm. Administration of piperonyl butoxide and S,S,S-tributyl phosphorotrithioate in first-instar feeding bioassays with the pyrethroids bifenthrin and β-cyfluthrin produced synergistic effects and demonstrated that cytochrome P450 monooxygenases and carboxylesterases contribute to resistance in this population. Resistance is therefore primarily metabolic and likely the result of overexpression of specific cytochrome P450 monooxygenases and carboxylesterase genes. Resistance was assessed by median lethal concentration (LC50) assays and maintained across nine generations in the laboratory. Life history trait comparisons between the resistant strain and susceptible strain revealed significantly lower pupal weights in resistant individuals reared on the same wheat bran-based artificial diet across six generations. Time to second instar was greater in the resistant strain than the susceptible strain, although overall development time was not significantly different between strains. Resistance was heritable and may have an associated fitness cost, which could influence the dispersal and expansion of resistant populations in nut-growing areas in California. Topics: Animals; California; Female; Genetic Fitness; Insecticide Resistance; Insecticides; Larva; Male; Moths; Nitriles; Organothiophosphates; Piperonyl Butoxide; Pupa; Pyrethrins | 2015 |
Effects of functionalized fullerenes on bifenthrin and tribufos toxicity to Daphnia magna: Survival, reproduction, and growth rate.
Incorporation of carbon nanomaterials into industrial and consumer products is increasing, yet their impact on aquatic ecosystems alone and in chemical mixtures is largely unknown. Carbon nanomaterials may be found in the aquatic environment as mixtures with pesticides because of their proposed use in agriculture as smart delivery systems and nanosensors. The interaction effects of a functionalized fullerene ([1,2-methanofullerene C₆₀]-61-carboxylic acid) (fC₆₀) at 52.8 µg/L and the hydrophobic pesticides bifenthrin and tribufos were examined. The test organism was Daphnia magna, and response variables included 48-h survival, reproduction (bifenthrin, 70-d; tribufos, 21-d), and 10-d growth. Both pesticides reduced D. magna survival and reproduction (p < 0.05). Fullerenes significantly increased bifenthrin acute toxicity but did not significantly affect chronic endpoints or growth (p > 0.05). Median lethal concentrations (LC50s), median inhibition concentrations (IC50s) for days surviving, and IC50s for reproduction were 0.86, 0.55, and 0.49 µg/L for bifenthrin; 0.22, 0.39, and 0.77 µg/L for fC₆₀-bifenthrin mix; 6.63, 9.89, and 5.79 µg/L for tribufos; and 9.17, 8.17, and 6.59 µg/L for fC₆₀-tribufos mix. Mixtures did not affect instantaneous growth rate (p > 0.05). These results suggest that fC₆₀ had little effect on pesticide chronic toxicity but influenced acute toxicity. Given the widespread application of nanotechnology, the influence of nanomaterials on environmental contaminants is an important consideration. Thus, our results may be useful in the development and use of nanotechnology in agricultural practices. Topics: Animals; Daphnia; Dose-Response Relationship, Drug; Fullerenes; Lethal Dose 50; Organothiophosphates; Pyrethrins; Reproduction; Survival Rate | 2010 |
Identification of pyrethroid resistance associated mutations in the para sodium channel of the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae).
We investigated pyrethroid resistance mechanisms in Tetranychus urticae strains from Greece. Combined bioassay, biochemical and synergistic data indicated that although P450 mono-oxygenase activities were associated with the trait, target site insensitivity was the major resistance component. A 3.3 kb cDNA fragment of the T. urticae para sodium channel gene encompassing segment 4 of domain II to segment 6 of domain IV was obtained by a degenerate PCR strategy. The T. urticae sequence showed highest identity (56%) to the scabies mite, Sarcoptes scabiei, and was phylogenetically classified within the divergent group of Arachnida. Comparison of resistant and susceptible strains identified the point mutation F1538I in segment 6 of domain III, which is known to confer strong resistance to pyrethroids, along with a second mutation (A1215D) in the intracellular linker connecting domains II and III with an unknown role. Three transcripts were identified corresponding to the k and l alternative exons. The mode of inheritance of resistance was confirmed as incompletely recessive, which is consistent with a target site mechanism for pyrethroids. Topics: Alternative Splicing; Amino Acid Sequence; Animals; Cloning, Molecular; Crosses, Genetic; Female; Genes, Insect; Inheritance Patterns; Insecticide Resistance; Male; Molecular Sequence Data; Mutation; Organothiophosphates; Phylogeny; Piperonyl Butoxide; Pyrethrins; RNA, Messenger; Sequence Alignment; Sodium Channels; Survival Analysis; Tetranychidae | 2009 |