bibp-3226 has been researched along with alpha-beta-methyleneadenosine-5--triphosphate* in 1 studies
1 other study(ies) available for bibp-3226 and alpha-beta-methyleneadenosine-5--triphosphate
Article | Year |
---|---|
Effects of a selective neuropeptide Y Y(1) receptor antagonist BIBP 3226 on double peaked vasoconstrictor responses to periarterial nerve stimulation in canine splenic arteries.
The periarterial electrical nerve stimulation (30 s trains of pulses at a frequency of 1, 4 or 10 Hz) induced a double peaked vasoconstriction consisting of an initial transient constriction (first peak) followed by a prolonged response (second peak) in the isolated, perfused canine splenic artery. At low frequencies (1 and 4 Hz), a neuropeptide Y (NPY) Y(1) receptor antagonist BIBP 3226 (0.1-1 microM) produced a dose-dependent inhibitory effect on the second peak, but did not modify the first peak. At a high frequency (10 Hz), 1 microM BIBP 3226 induced a slight, but significant inhibition on both the first and second peaked responses. At a low frequency (1 Hz), the first peak was not influenced by blockade of alpha(1)-adrenoceptors or NPY Y(1) receptors with prazosin (0.1 microM) or BIBP 3226 (1 microM), respectively, but abolished by P2X receptor desensitization with alpha,beta-methylene ATP (alphabeta-m ATP, 1 microM). At a high frequency (10 Hz), the first peak was mostly inhibited by alphabeta-m ATP and partially by prazosin and BIBP 3226. On the other hand, the second peak at a low frequency was largely decreased by BIBP 3226 and partially by prazosin and alphabeta-m ATP, whereas at a high frequency, it was largely attenuated by prazosin and partially by alphabeta-m ATP and BIBP 3226. The results suggest that at a low frequency, the firstly transient constriction of double peaked responses is mainly induced via an activation of P2X-receptors, whereas at a high frequency, it is mostly mediated by the P2X-receptors, and partially by alpha(1)-receptors and NPY Y(1)-receptors. The secondary prolonged vasoconstriction at frequencies used is predominantly mediated via both alpha(1)-receptor and NPY Y(1) receptor activations, and in part by P2X-receptors. Furthermore, an activation of NPY Y(1) receptors may play an important role in evoking the prolonged vasoconstrictor response to longer pulse trains of stimulation at a low frequency, whereas an alpha(1)-adrenoceptor activation exerts a main vasomotor effect for the prolonged response at a high frequency. Topics: Adenosine Triphosphate; Adrenergic alpha-Antagonists; Animals; Anti-Anxiety Agents; Arginine; Dogs; Drug Interactions; Electric Stimulation; Female; In Vitro Techniques; Male; Nerve Tissue; Neuropeptide Y; Norepinephrine; Prazosin; Receptors, Neuropeptide Y; Splenic Artery; Vasoconstriction | 2000 |