betulinic acid has been researched along with sitosterol, (3beta)-isomer in 8 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (50.00) | 29.6817 |
2010's | 4 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Gao, Z; Hecht, SM; Jones, SH; Kingston, DG; Prakash Chaturvedula, VS | 1 |
Habib-Jiwan, JL; Hoet, S; Muccioli, GG; Opperdoes, FR; Pieters, L; Quetin-Leclercq, J | 1 |
Akhtar, MN; Choudhary, MI; Khan, SN; Zareen, S | 1 |
Bae, K; Ha, do T; Ngoc, TM; Nhiem, NX; Thu, NB; Tuan, DT; Yim, N | 1 |
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Chin, YW; Jee, JG; Jeong, YJ; Keum, YS; Kim, Y; Lee, J; Lee, JM; Yu, MS | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Ahn, HC; Cho, SC; Choi, BY; Fei, X; Keum, YS; Kim, HJ; Lee, K; Seo, SY | 1 |
8 other study(ies) available for betulinic acid and sitosterol, (3beta)-isomer
Article | Year |
---|---|
A new acylated oleanane triterpenoid from Couepia polyandra that inhibits the lyase activity of DNA polymerase beta.
Topics: Base Sequence; Betulinic Acid; Chrysobalanaceae; DNA Polymerase beta; Enzyme Inhibitors; Lyases; Mexico; Molecular Sequence Data; Nuclear Magnetic Resonance, Biomolecular; Oleanolic Acid; Pentacyclic Triterpenes; Plant Bark; Plant Stems; Plants, Medicinal; Triterpenes | 2003 |
Antitrypanosomal activity of triterpenoids and sterols from the leaves of Strychnos spinosa and related compounds.
Topics: Animals; Benin; Cell Line, Tumor; Molecular Structure; Plant Leaves; Plants, Medicinal; Sterols; Stigmasterol; Structure-Activity Relationship; Strychnos; Triterpenes; Trypanocidal Agents; Trypanosoma brucei brucei | 2007 |
alpha-Glucosidase inhibitory activity of triterpenoids from Cichorium intybus.
Topics: alpha-Glucosidases; Cichorium intybus; Glycoside Hydrolase Inhibitors; Molecular Structure; Pentacyclic Triterpenes; Plants, Medicinal; Saccharomyces; Seeds; Triterpenes | 2008 |
Palbinone and triterpenes from Moutan Cortex (Paeonia suffruticosa, Paeoniaceae) stimulate glucose uptake and glycogen synthesis via activation of AMPK in insulin-resistant human HepG2 Cells.
Topics: AMP-Activated Protein Kinases; Cell Line, Tumor; Diabetes Mellitus, Type 2; Drugs, Chinese Herbal; Glucose; Glycogen; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Hypoglycemic Agents; Insulin Resistance; Paeonia; Phosphorylation; Terpenes; Triterpenes | 2009 |
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13.
Topics: Adenosine Triphosphate; Antiviral Agents; Apigenin; Breast; Cell Line; Cell Proliferation; Colorimetry; DNA; DNA Helicases; Epithelial Cells; Female; Flavonoids; Fluorescence Resonance Energy Transfer; Hepacivirus; Humans; Hydrolysis; Inhibitory Concentration 50; Kinetics; Methyltransferases; RNA Helicases; Severe acute respiratory syndrome-related coronavirus; Species Specificity; Viral Nonstructural Proteins; Viral Proteins | 2012 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Discovery of α-mangostin as a novel competitive inhibitor against mutant isocitrate dehydrogenase-1.
Topics: Binding, Competitive; Drug Discovery; Humans; Isocitrate Dehydrogenase; MCF-7 Cells; Molecular Structure; Mutation; Recombinant Proteins; Structure-Activity Relationship; Xanthones | 2015 |